---
license: other
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: deepseek-ai/deepseek-coder-6.7b-instruct
model-index:
- name: diff-deepseek-code-ir
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: deepseek-ai/deepseek-coder-6.7b-instruct
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizerFast
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: vdaita/editpackft_inst_code
split: train
type: oasst
dataset_prepared_path:
test_datasets:
- path: vdaita/editpackft_inst_code
split: test
type: oasst
output_dir: ./outputs/dscoder-code-ir-4
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: huggingface
wandb_log_model: axolotl-dscoder-code-3
hub_model_id: vdaita/diff-deepseek-code-ir
hub_strategy: every_save
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|begin_of_sentence|>"
eos_token: "<|end_of_sentence|>"
pad_token: "<|end_of_sentence|>"
```
# diff-deepseek-code-ir
This model is a fine-tuned version of [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2549
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.5233 | 0.02 | 1 | 0.5554 |
| 0.3976 | 0.25 | 13 | 0.3534 |
| 0.3354 | 0.51 | 26 | 0.2805 |
| 0.2759 | 0.76 | 39 | 0.2549 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.15.0