--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - common_voice_17_0 model-index: - name: speecht5_tts_tamil results: [] --- # speecht5_tts_tamil This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.654 | 1.8051 | 500 | 0.5666 | | 0.5732 | 3.6101 | 1000 | 0.5203 | | 0.5504 | 5.4152 | 1500 | 0.4997 | | 0.5361 | 7.2202 | 2000 | 0.4916 | | 0.5595 | 9.0253 | 2500 | 0.4898 | | 0.5241 | 10.8303 | 3000 | 0.4870 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3