--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - et - robust-speech-event - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-1B - Estonian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: et metrics: - name: Test WER type: wer value: 52.47 - name: Test CER type: cer value: 12.59 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 61.02 - name: Test CER type: cer value: 21.08 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: et metrics: - name: Test WER type: wer value: 59.23 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: et metrics: - name: Test WER type: wer value: 69.08 --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ET dataset. It achieves the following results on the evaluation set: - Loss: 0.8824 - Wer: 0.5246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 25000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 1.0296 | 2.79 | 500 | 0.8106 | 0.8029 | | 0.9339 | 5.59 | 1000 | 0.7419 | 0.7932 | | 0.8925 | 8.38 | 1500 | 0.7137 | 0.7706 | | 0.8484 | 11.17 | 2000 | 0.7020 | 0.7677 | | 0.7521 | 13.97 | 2500 | 0.7043 | 0.7375 | | 0.719 | 16.76 | 3000 | 0.6617 | 0.7428 | | 0.656 | 19.55 | 3500 | 0.6388 | 0.7202 | | 0.6085 | 22.35 | 4000 | 0.6211 | 0.6960 | | 0.5598 | 25.14 | 4500 | 0.6132 | 0.6644 | | 0.4969 | 27.93 | 5000 | 0.6065 | 0.6521 | | 0.4638 | 30.73 | 5500 | 0.6978 | 0.6577 | | 0.4385 | 33.52 | 6000 | 0.5994 | 0.6565 | | 0.396 | 36.31 | 6500 | 0.6170 | 0.6258 | | 0.3861 | 39.11 | 7000 | 0.6486 | 0.6217 | | 0.3602 | 41.9 | 7500 | 0.6508 | 0.6115 | | 0.3251 | 44.69 | 8000 | 0.7022 | 0.6253 | | 0.3197 | 47.49 | 8500 | 0.7706 | 0.6215 | | 0.3013 | 50.28 | 9000 | 0.6419 | 0.5999 | | 0.2813 | 53.07 | 9500 | 0.6908 | 0.5959 | | 0.286 | 55.87 | 10000 | 0.7151 | 0.5916 | | 0.2645 | 58.66 | 10500 | 0.7181 | 0.5860 | | 0.2535 | 61.45 | 11000 | 0.7877 | 0.5979 | | 0.247 | 64.25 | 11500 | 0.8199 | 0.6129 | | 0.2412 | 67.04 | 12000 | 0.7679 | 0.5884 | | 0.2404 | 69.83 | 12500 | 0.7266 | 0.5816 | | 0.2293 | 72.63 | 13000 | 0.7928 | 0.5795 | | 0.2176 | 75.42 | 13500 | 0.7916 | 0.5846 | | 0.2143 | 78.21 | 14000 | 0.7954 | 0.5765 | | 0.2185 | 81.01 | 14500 | 0.8317 | 0.5907 | | 0.2057 | 83.8 | 15000 | 0.8016 | 0.5851 | | 0.1895 | 86.59 | 15500 | 0.8080 | 0.5679 | | 0.1883 | 89.39 | 16000 | 0.8103 | 0.5712 | | 0.1802 | 92.18 | 16500 | 0.8383 | 0.5644 | | 0.1826 | 94.97 | 17000 | 0.8799 | 0.5657 | | 0.1717 | 97.77 | 17500 | 0.8620 | 0.5709 | | 0.1701 | 100.56 | 18000 | 0.8717 | 0.5662 | | 0.1623 | 103.35 | 18500 | 0.8534 | 0.5594 | | 0.158 | 106.15 | 19000 | 0.8595 | 0.5546 | | 0.1508 | 108.94 | 19500 | 0.8574 | 0.5545 | | 0.142 | 111.73 | 20000 | 0.8671 | 0.5537 | | 0.1395 | 114.53 | 20500 | 0.8436 | 0.5525 | | 0.1373 | 117.32 | 21000 | 0.8808 | 0.5482 | | 0.1338 | 120.11 | 21500 | 0.9024 | 0.5418 | | 0.1278 | 122.91 | 22000 | 0.9143 | 0.5409 | | 0.1207 | 125.7 | 22500 | 0.8917 | 0.5358 | | 0.1203 | 128.49 | 23000 | 0.9041 | 0.5341 | | 0.1083 | 131.28 | 23500 | 0.8884 | 0.5341 | | 0.1147 | 134.08 | 24000 | 0.8910 | 0.5255 | | 0.1129 | 136.87 | 24500 | 0.8826 | 0.5241 | | 0.1029 | 139.66 | 25000 | 0.8824 | 0.5246 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0