vashuag commited on
Commit
acea346
1 Parent(s): 1d34dbd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -25
README.md CHANGED
@@ -1,26 +1,88 @@
1
  ---
2
- datasets:
3
- - utkarsharora100/google_go_emotions_hindi_translated
4
- language:
5
- - hi
6
- - en
7
- metrics:
8
- - accuracy 0.6997
9
- - f1 0.6750
10
- - precision 0.6761
11
- - recall 0.6997
12
- - roc_auc 0.8207
13
- base_model:
14
- - ai4bharat/indic-bert
15
- pipeline_tag: text-classification
16
- ---
17
- Summary
18
- The model achieved its best performance on Epoch 5, with an accuracy of 0.6997, F1 score of 0.6750, precision of 0.6761, recall of 0.6997, and ROC AUC of 0.8207.
19
- The model shows stable performance across later epochs, with slight fluctuations in metrics but generally consistent results.
20
- Training Details
21
- Model: ai4bharat/indic-bert
22
- Dataset: Google Go Emotions Hindi Translated
23
- Labels: Anger, Disgust, Fear, Joy, Neutral, Sadness, Surprise
24
- Epochs: 10
25
- Batch Size: 16
26
- Learning Rate: 1e-5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - hi
4
+ - en
5
+ datasets:
6
+ - utkarsharora100/google_go_emotions_hindi_translated
7
+ metrics:
8
+ - accuracy: 0.8085
9
+ - precision: 0.7996
10
+ - recall: 0.8085
11
+ - f1: 0.7983
12
+ - confusion_matrix:
13
+ anger: [2, 0, 0, 1, 2, 0]
14
+ disgust: [0, 1, 0, 0, 0, 0]
15
+ joy: [0, 0, 6, 0, 0, 0]
16
+ surprise: [0, 0, 0, 3, 1, 0]
17
+ neutral: [1, 0, 1, 0, 23, 1]
18
+ sadness: [0, 0, 0, 0, 2, 3]
19
+ - classification_report:
20
+ anger:
21
+ precision: 0.67
22
+ recall: 0.40
23
+ f1-score: 0.50
24
+ support: 5
25
+ disgust:
26
+ precision: 1.00
27
+ recall: 1.00
28
+ f1-score: 1.00
29
+ support: 1
30
+ joy:
31
+ precision: 0.86
32
+ recall: 1.00
33
+ f1-score: 0.92
34
+ support: 6
35
+ surprise:
36
+ precision: 0.82
37
+ recall: 0.88
38
+ f1-score: 0.85
39
+ support: 26
40
+ neutral:
41
+ precision: 0.75
42
+ recall: 0.60
43
+ f1-score: 0.67
44
+ support: 5
45
+ sadness:
46
+ precision: 0.75
47
+ recall: 0.75
48
+ f1-score: 0.75
49
+ support: 4
50
+ weighted_avg:
51
+ precision: 0.80
52
+ recall: 0.81
53
+ f1-score: 0.80
54
+ support: 47
55
+
56
+ model_name: "vashuag/HindiEmotion"
57
+ base_model: "ai4bharat/indic-bert"
58
+ pipeline_tag: "text-classification"
59
+ tags:
60
+ - emotion-detection
61
+ - hindi
62
+ - huggingface
63
+ - text-classification
64
+
65
+ training:
66
+ - epochs: 10
67
+ - batch_size: 16
68
+ - learning_rate: 1e-5
69
+
70
+ resources:
71
+ - colab_demo: "https://colab.research.google.com/drive/1OaXK2L-2A7adFv-lcEDHcHwKiR22O3Je?usp=sharing"
72
+ - kaggle_notebook: "https://www.kaggle.com/code/vashuagarwal/emotion-indicbert"
73
+
74
+ summary: |
75
+ The model achieved its best performance on Epoch 5, with an accuracy of 0.6997, F1 score of 0.6750, precision of 0.6761, recall of 0.6997, and ROC AUC of 0.8207.
76
+ The model shows stable performance across later epochs, with slight fluctuations in metrics but generally consistent results.
77
+
78
+ usage: |
79
+ ```python
80
+ from transformers import pipeline
81
+
82
+ # Load the model pipeline
83
+ emotion_model = pipeline("text-classification", model="vashuag/HindiEmotion", return_all_scores=True)
84
+
85
+ # Example prediction
86
+ text = "आप बहुत अच्छे हैं" # Translation: "You are very good."
87
+ predictions = emotion_model(text)
88
+ print(predictions)