Update README.md
Browse files
README.md
CHANGED
@@ -1,26 +1,88 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
-
|
4 |
-
|
5 |
-
|
6 |
-
-
|
7 |
-
metrics:
|
8 |
-
- accuracy 0.
|
9 |
-
-
|
10 |
-
-
|
11 |
-
-
|
12 |
-
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- hi
|
4 |
+
- en
|
5 |
+
datasets:
|
6 |
+
- utkarsharora100/google_go_emotions_hindi_translated
|
7 |
+
metrics:
|
8 |
+
- accuracy: 0.8085
|
9 |
+
- precision: 0.7996
|
10 |
+
- recall: 0.8085
|
11 |
+
- f1: 0.7983
|
12 |
+
- confusion_matrix:
|
13 |
+
anger: [2, 0, 0, 1, 2, 0]
|
14 |
+
disgust: [0, 1, 0, 0, 0, 0]
|
15 |
+
joy: [0, 0, 6, 0, 0, 0]
|
16 |
+
surprise: [0, 0, 0, 3, 1, 0]
|
17 |
+
neutral: [1, 0, 1, 0, 23, 1]
|
18 |
+
sadness: [0, 0, 0, 0, 2, 3]
|
19 |
+
- classification_report:
|
20 |
+
anger:
|
21 |
+
precision: 0.67
|
22 |
+
recall: 0.40
|
23 |
+
f1-score: 0.50
|
24 |
+
support: 5
|
25 |
+
disgust:
|
26 |
+
precision: 1.00
|
27 |
+
recall: 1.00
|
28 |
+
f1-score: 1.00
|
29 |
+
support: 1
|
30 |
+
joy:
|
31 |
+
precision: 0.86
|
32 |
+
recall: 1.00
|
33 |
+
f1-score: 0.92
|
34 |
+
support: 6
|
35 |
+
surprise:
|
36 |
+
precision: 0.82
|
37 |
+
recall: 0.88
|
38 |
+
f1-score: 0.85
|
39 |
+
support: 26
|
40 |
+
neutral:
|
41 |
+
precision: 0.75
|
42 |
+
recall: 0.60
|
43 |
+
f1-score: 0.67
|
44 |
+
support: 5
|
45 |
+
sadness:
|
46 |
+
precision: 0.75
|
47 |
+
recall: 0.75
|
48 |
+
f1-score: 0.75
|
49 |
+
support: 4
|
50 |
+
weighted_avg:
|
51 |
+
precision: 0.80
|
52 |
+
recall: 0.81
|
53 |
+
f1-score: 0.80
|
54 |
+
support: 47
|
55 |
+
|
56 |
+
model_name: "vashuag/HindiEmotion"
|
57 |
+
base_model: "ai4bharat/indic-bert"
|
58 |
+
pipeline_tag: "text-classification"
|
59 |
+
tags:
|
60 |
+
- emotion-detection
|
61 |
+
- hindi
|
62 |
+
- huggingface
|
63 |
+
- text-classification
|
64 |
+
|
65 |
+
training:
|
66 |
+
- epochs: 10
|
67 |
+
- batch_size: 16
|
68 |
+
- learning_rate: 1e-5
|
69 |
+
|
70 |
+
resources:
|
71 |
+
- colab_demo: "https://colab.research.google.com/drive/1OaXK2L-2A7adFv-lcEDHcHwKiR22O3Je?usp=sharing"
|
72 |
+
- kaggle_notebook: "https://www.kaggle.com/code/vashuagarwal/emotion-indicbert"
|
73 |
+
|
74 |
+
summary: |
|
75 |
+
The model achieved its best performance on Epoch 5, with an accuracy of 0.6997, F1 score of 0.6750, precision of 0.6761, recall of 0.6997, and ROC AUC of 0.8207.
|
76 |
+
The model shows stable performance across later epochs, with slight fluctuations in metrics but generally consistent results.
|
77 |
+
|
78 |
+
usage: |
|
79 |
+
```python
|
80 |
+
from transformers import pipeline
|
81 |
+
|
82 |
+
# Load the model pipeline
|
83 |
+
emotion_model = pipeline("text-classification", model="vashuag/HindiEmotion", return_all_scores=True)
|
84 |
+
|
85 |
+
# Example prediction
|
86 |
+
text = "आप बहुत अच्छे हैं" # Translation: "You are very good."
|
87 |
+
predictions = emotion_model(text)
|
88 |
+
print(predictions)
|