--- license: other base_model: nvidia/mit-b5 tags: - generated_from_trainer model-index: - name: segcrack9k_conglomerate_train_test results: [] --- # segcrack9k_conglomerate_train_test This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0298 - Mean Iou: 0.3639 - Mean Accuracy: 0.7278 - Overall Accuracy: 0.7278 - Accuracy Background: nan - Accuracy Crack: 0.7278 - Iou Background: 0.0 - Iou Crack: 0.7278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:| | 0.0374 | 0.18 | 1000 | 0.0410 | 0.2472 | 0.4944 | 0.4944 | nan | 0.4944 | 0.0 | 0.4944 | | 0.0337 | 0.36 | 2000 | 0.0341 | 0.3749 | 0.7497 | 0.7497 | nan | 0.7497 | 0.0 | 0.7497 | | 0.0209 | 0.55 | 3000 | 0.0318 | 0.3335 | 0.6670 | 0.6670 | nan | 0.6670 | 0.0 | 0.6670 | | 0.0099 | 0.73 | 4000 | 0.0315 | 0.3371 | 0.6743 | 0.6743 | nan | 0.6743 | 0.0 | 0.6743 | | 0.026 | 0.91 | 5000 | 0.0298 | 0.3639 | 0.7278 | 0.7278 | nan | 0.7278 | 0.0 | 0.7278 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3