--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.7307692307692307 --- # wav2vec2-base-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.2479 - Accuracy: 0.7308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 18 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9797 | 1.0 | 70 | 1.9644 | 0.3718 | | 1.4254 | 2.0 | 140 | 1.7058 | 0.4359 | | 1.3827 | 3.0 | 210 | 1.3349 | 0.5769 | | 1.1156 | 4.0 | 280 | 1.2080 | 0.6795 | | 0.7843 | 5.0 | 350 | 1.1072 | 0.6667 | | 0.7063 | 6.0 | 420 | 1.2091 | 0.6667 | | 0.4972 | 7.0 | 490 | 1.0370 | 0.7179 | | 0.6555 | 8.0 | 560 | 1.1193 | 0.6795 | | 0.4934 | 9.0 | 630 | 0.9080 | 0.7692 | | 0.1664 | 10.0 | 700 | 1.2513 | 0.6795 | | 0.3892 | 11.0 | 770 | 1.3065 | 0.6667 | | 0.0895 | 12.0 | 840 | 1.2479 | 0.7308 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0