--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-isic217 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.5909090909090909 --- # swin-tiny-patch4-window7-224-finetuned-isic217 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.3724 - Accuracy: 0.5909 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.2679 | 0.9796 | 24 | 2.1550 | 0.0909 | | 2.0504 | 2.0 | 49 | 2.0559 | 0.2727 | | 1.8943 | 2.9796 | 73 | 2.0186 | 0.2273 | | 1.5671 | 4.0 | 98 | 1.8154 | 0.2273 | | 1.3425 | 4.9796 | 122 | 2.0475 | 0.2273 | | 1.2758 | 6.0 | 147 | 2.1914 | 0.2273 | | 0.9808 | 6.9796 | 171 | 2.0478 | 0.3636 | | 0.7246 | 8.0 | 196 | 1.8840 | 0.4091 | | 0.7323 | 8.9796 | 220 | 2.1831 | 0.4091 | | 0.4881 | 10.0 | 245 | 2.2868 | 0.3636 | | 0.4346 | 10.9796 | 269 | 2.2312 | 0.4545 | | 0.5647 | 12.0 | 294 | 1.9897 | 0.4091 | | 0.1464 | 12.9796 | 318 | 2.0579 | 0.4545 | | 0.5575 | 14.0 | 343 | 2.1859 | 0.4545 | | 0.3894 | 14.9796 | 367 | 2.7353 | 0.3636 | | 0.4326 | 16.0 | 392 | 2.4455 | 0.3636 | | 0.3715 | 16.9796 | 416 | 2.3104 | 0.5455 | | 0.3966 | 18.0 | 441 | 2.4597 | 0.4545 | | 0.1855 | 18.9796 | 465 | 2.3335 | 0.3636 | | 0.1528 | 20.0 | 490 | 2.3630 | 0.4091 | | 0.2036 | 20.9796 | 514 | 2.3520 | 0.4545 | | 0.2026 | 22.0 | 539 | 2.7012 | 0.4091 | | 0.2127 | 22.9796 | 563 | 2.3724 | 0.5909 | | 0.2719 | 24.0 | 588 | 3.0376 | 0.3182 | | 0.1292 | 24.9796 | 612 | 2.5684 | 0.5 | | 0.2533 | 26.0 | 637 | 2.6974 | 0.4091 | | 0.1947 | 26.9796 | 661 | 2.6957 | 0.4091 | | 0.1805 | 28.0 | 686 | 2.8953 | 0.4091 | | 0.1123 | 28.9796 | 710 | 2.8240 | 0.4091 | | 0.2143 | 30.0 | 735 | 2.3880 | 0.4545 | | 0.1845 | 30.9796 | 759 | 2.6072 | 0.3636 | | 0.0921 | 32.0 | 784 | 2.7256 | 0.4545 | | 0.0276 | 32.9796 | 808 | 2.4074 | 0.4091 | | 0.0876 | 34.0 | 833 | 2.6043 | 0.4545 | | 0.0253 | 34.9796 | 857 | 2.7620 | 0.4545 | | 0.1904 | 36.0 | 882 | 2.6911 | 0.4091 | | 0.072 | 36.9796 | 906 | 2.6528 | 0.4545 | | 0.169 | 38.0 | 931 | 2.6454 | 0.4545 | | 0.0978 | 38.9796 | 955 | 2.6269 | 0.5 | | 0.069 | 40.0 | 980 | 2.4154 | 0.4545 | | 0.0159 | 40.9796 | 1004 | 2.7026 | 0.4545 | | 0.2046 | 42.0 | 1029 | 2.5213 | 0.4545 | | 0.0329 | 42.9796 | 1053 | 2.6399 | 0.5 | | 0.0166 | 44.0 | 1078 | 2.7787 | 0.4545 | | 0.0812 | 44.9796 | 1102 | 2.8176 | 0.4545 | | 0.0197 | 46.0 | 1127 | 2.8049 | 0.4545 | | 0.0989 | 46.9796 | 1151 | 2.7479 | 0.4545 | | 0.054 | 48.0 | 1176 | 2.7614 | 0.4545 | | 0.1095 | 48.9796 | 1200 | 2.7604 | 0.5 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1