--- pipeline_tag: sentence-similarity language: en license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - onnx --- # ONNX convert all-MiniLM-L6-v2 ## Conversion of [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) This is a [sentence-transformers](https://www.SBERT.net) ONNX model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. This custom model takes `last_hidden_state` and `pooler_output` whereas the sentence-transformers exported with default ONNX config only contains `last_hidden_state` as output. ## Usage (HuggingFace Optimum) Using this model becomes easy when you have [optimum](https://github.com/huggingface/optimum) installed: ``` python -m pip install optimum ``` Then you can use the model like this: ```python from optimum.onnxruntime.modeling_ort import ORTModelForCustomTasks model = ORTModelForCustomTasks.from_pretrained("vamsibanda/sbert-all-MiniLM-L12-with-pooler") tokenizer = AutoTokenizer.from_pretrained("vamsibanda/sbert-all-MiniLM-L12-with-pooler") inputs = tokenizer("I love burritos!", return_tensors="pt") pred = model(**inputs) ``` You will also be able to leverage the pipeline API in transformers: ```python from transformers import pipeline onnx_extractor = pipeline("feature-extraction", model=model, tokenizer=tokenizer) text = "I love burritos!" pred = onnx_extractor(text) ```