--- pipeline_tag: sentence-similarity language: en license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - onnx --- # This is the ONNX model of sentence-transformers/all-MiniLM-L6-v2 [https://seb.sbert.net]. Currently, Hugging Face does not support downloading ONNX model and generate embeddings. I have created a workaround using sbert and optimum together to generate embeddings. ``` pip install onnx pip install onnxruntime==1.10.0 pip install transformers>4.6.1 pip install sentencepiece pip install sentence-transformers pip install optimum pip install torch==1.9.0 ``` Then you can use the model like this: ```python import os from sentence_transformers.util import snapshot_download from transformers import AutoTokenizer from optimum.onnxruntime import ORTModelForFeatureExtraction from sentence_transformers.models import Transformer, Pooling, Dense import torch from transformers.modeling_outputs import BaseModelOutput import torch.nn.functional as F import shutil model_name = 'vamsibanda/sbert-onnx-all-MiniLM-L12-v2' cache_folder = './' model_path = os.path.join(cache_folder, model_name.replace("/", "_")) def download_onnx_model(model_name, cache_folder, model_path, force_download = False): if force_download and os.path.exists(model_path): shutil.rmtree(model_path) elif os.path.exists(model_path): return snapshot_download(model_name, cache_dir=cache_folder, library_name='sentence-transformers' ) return def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) def generate_embedding(text): token = tokenizer(text, return_tensors='pt') embedding = model(input_ids=token['input_ids'], attention_mask=token['attention_mask']) embedding = mean_pooling(embedding, token['attention_mask']) embedding = F.normalize(embedding, p=2, dim=1) return embedding.tolist()[0] _ = download_onnx_model(model_name, cache_folder, model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) model = ORTModelForFeatureExtraction.from_pretrained(model_path, force_download=False) pooling_layer = Pooling.load(f"{model_path}/1_Pooling") generate_embedding('That is a happy person') ```