--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-agrivision results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9362186788154897 --- # swin-tiny-patch4-window7-224-finetuned-agrivision This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2783 - Accuracy: 0.9362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5829 | 1.0 | 31 | 0.7480 | 0.7267 | | 0.1199 | 2.0 | 62 | 0.4407 | 0.8246 | | 0.1028 | 3.0 | 93 | 0.4477 | 0.8246 | | 0.0533 | 4.0 | 124 | 0.4606 | 0.8292 | | 0.0411 | 5.0 | 155 | 0.2470 | 0.9180 | | 0.022 | 6.0 | 186 | 0.1568 | 0.9544 | | 0.0206 | 7.0 | 217 | 0.4187 | 0.8793 | | 0.0069 | 8.0 | 248 | 0.2498 | 0.9203 | | 0.0053 | 9.0 | 279 | 0.2654 | 0.9226 | | 0.0094 | 10.0 | 310 | 0.2343 | 0.9385 | | 0.0152 | 11.0 | 341 | 0.3421 | 0.9021 | | 0.0047 | 12.0 | 372 | 0.4494 | 0.8724 | | 0.0128 | 13.0 | 403 | 0.5360 | 0.8679 | | 0.0024 | 14.0 | 434 | 0.2775 | 0.9112 | | 0.0127 | 15.0 | 465 | 0.2911 | 0.8975 | | 0.0038 | 16.0 | 496 | 0.2337 | 0.9294 | | 0.0001 | 17.0 | 527 | 0.2207 | 0.9408 | | 0.0054 | 18.0 | 558 | 0.2506 | 0.9362 | | 0.0011 | 19.0 | 589 | 0.3778 | 0.8952 | | 0.0002 | 20.0 | 620 | 0.2316 | 0.9408 | | 0.0003 | 21.0 | 651 | 0.2133 | 0.9431 | | 0.0009 | 22.0 | 682 | 0.2519 | 0.9339 | | 0.0004 | 23.0 | 713 | 0.2931 | 0.9203 | | 0.0001 | 24.0 | 744 | 0.2847 | 0.9271 | | 0.0003 | 25.0 | 775 | 0.2831 | 0.9317 | | 0.0008 | 26.0 | 806 | 0.2919 | 0.9271 | | 0.0003 | 27.0 | 837 | 0.2798 | 0.9362 | | 0.0008 | 28.0 | 868 | 0.2857 | 0.9362 | | 0.0008 | 29.0 | 899 | 0.2780 | 0.9362 | | 0.0013 | 30.0 | 930 | 0.2783 | 0.9362 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1