{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000002A43A03A740>" }, "verbose": 1, "policy_kwargs": {}, "observation_space": { ":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [ 8 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 32, "num_timesteps": 327680, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656443360.6676748, "learning_rate": 1e-05, "tensorboard_log": "log/", "lr_schedule": { ":type:": "", ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFZDOlxVc2Vyc1x1dmQyMFwudmlydHVhbGVudnNcQ1YtZW52XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7k+LWI42jxhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4=" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.67232, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZVQZxl1yb0CUhpRSlIwBbJRLtYwBdJRHQKZp76Vt4zJ1fZQoaAZoCWgPQwjjqUca3LJyQJSGlFKUaBVLy2gWR0CmafXKbKA8dX2UKGgGaAloD0MI0o2wqEi1c0CUhpRSlGgVS9doFkdApmoIvFm4AnV9lChoBmgJaA9DCAx2w7YFZ3NAlIaUUpRoFUviaBZHQKZqDFG5MDh1fZQoaAZoCWgPQwgyychZWFtwQJSGlFKUaBVLuWgWR0CmaiJVjqfOdX2UKGgGaAloD0MI4h+29KiVcECUhpRSlGgVS6toFkdApmoqA+Y+jnV9lChoBmgJaA9DCILix5g7FHJAlIaUUpRoFUuoaBZHQKZqN1Oj7AN1fZQoaAZoCWgPQwgtQUZABWpxQJSGlFKUaBVLvmgWR0Cmake10DEFdX2UKGgGaAloD0MINloO9BBac0CUhpRSlGgVS+BoFkdApmpiVbA1vXV9lChoBmgJaA9DCNo4Yi1+snJAlIaUUpRoFUu2aBZHQKZqi0tyxRl1fZQoaAZoCWgPQwgzqDY4EatwQJSGlFKUaBVLsGgWR0Cmap021lXjdX2UKGgGaAloD0MIijve5Hc7dECUhpRSlGgVS9xoFkdApmrndGiHqXV9lChoBmgJaA9DCAkVHF6QCXJAlIaUUpRoFUvAaBZHQKZrMS7GvOh1fZQoaAZoCWgPQwjtfhXge35yQJSGlFKUaBVLkGgWR0Cma01X3g1ndX2UKGgGaAloD0MIF2U2yCRCc0CUhpRSlGgVS+VoFkdApmtWC/XXiHV9lChoBmgJaA9DCGdhTzt8L3FAlIaUUpRoFUu3aBZHQKZrdUdaMaV1fZQoaAZoCWgPQwjhQbPr3oFyQJSGlFKUaBVLoWgWR0Cma4rIYFaCdX2UKGgGaAloD0MIEY5Z9mT1ckCUhpRSlGgVS9VoFkdApmuRcHGCI3V9lChoBmgJaA9DCIgs0sS7OXFAlIaUUpRoFUunaBZHQKZrmiRnvlV1fZQoaAZoCWgPQwiVuflGtHJxQJSGlFKUaBVLvWgWR0Cma6FPrOZ9dX2UKGgGaAloD0MIVmMJa2PHcUCUhpRSlGgVS7doFkdApmvClzltCXV9lChoBmgJaA9DCFCpEmUvY3FAlIaUUpRoFUu4aBZHQKZrzNTLns91fZQoaAZoCWgPQwiowwq3PElyQJSGlFKUaBVLo2gWR0Cma9DtPYWddX2UKGgGaAloD0MIgqj7AOQ2c0CUhpRSlGgVS8ZoFkdApmvi2KEWZnV9lChoBmgJaA9DCLeb4JvmW3BAlIaUUpRoFUu7aBZHQKZr4tjCpFV1fZQoaAZoCWgPQwjBGmfTEZNyQJSGlFKUaBVLyGgWR0CmbAe10DEFdX2UKGgGaAloD0MIX+0oztFLdECUhpRSlGgVS9poFkdApmwViQT24HV9lChoBmgJaA9DCOQuwhTlhXFAlIaUUpRoFUuraBZHQKZsJesxO+J1fZQoaAZoCWgPQwhV98jmaixxQJSGlFKUaBVLvmgWR0CmbDZNwiqydX2UKGgGaAloD0MIYoIavkUfckCUhpRSlGgVS69oFkdApmxAB91EE3V9lChoBmgJaA9DCLSs+8eCc3JAlIaUUpRoFUvdaBZHQKZsV5VOsT51fZQoaAZoCWgPQwifPZepCfRyQJSGlFKUaBVL2GgWR0CmbGd0aIepdX2UKGgGaAloD0MIRidLrXeOckCUhpRSlGgVS8NoFkdApmxsEA5q/XV9lChoBmgJaA9DCOOMYU5QjHFAlIaUUpRoFUu3aBZHQKZsbyLAHml1fZQoaAZoCWgPQwjaHVIMkNRwQJSGlFKUaBVLr2gWR0CmbHdTxXnydX2UKGgGaAloD0MINPPkmgINckCUhpRSlGgVS8ZoFkdApmyFqYZ2p3V9lChoBmgJaA9DCCr9hLMb1nBAlIaUUpRoFUukaBZHQKZsjd43WFx1fZQoaAZoCWgPQwgCm3PwjCxzQJSGlFKUaBVLv2gWR0CmbKHV5KODdX2UKGgGaAloD0MIX7NcNnrYckCUhpRSlGgVS8JoFkdApmy/BSDRMXV9lChoBmgJaA9DCLRxxFp8KXFAlIaUUpRoFUulaBZHQKZsycWCVbB1fZQoaAZoCWgPQwhauKzCJpNzQJSGlFKUaBVL0WgWR0CmbP8E/0NCdX2UKGgGaAloD0MIm3XG9wVmckCUhpRSlGgVS+5oFkdApm0fRsuWbHV9lChoBmgJaA9DCOc1donqQHBAlIaUUpRoFUudaBZHQKZtO2+fywx1fZQoaAZoCWgPQwjT9UTXRVtwQJSGlFKUaBVLlmgWR0CmbUc2R7qqdX2UKGgGaAloD0MIaEC9GbWTc0CUhpRSlGgVS+FoFkdApm167I1cdHV9lChoBmgJaA9DCGfROxVwOnFAlIaUUpRoFUucaBZHQKZti9Htnf51fZQoaAZoCWgPQwhl4etrnfJxQJSGlFKUaBVLy2gWR0CmbY9nbqQjdX2UKGgGaAloD0MIsK4K1KIscECUhpRSlGgVS5poFkdApm2Uhib2DnV9lChoBmgJaA9DCEJ23samGnBAlIaUUpRoFUujaBZHQKZtt9pAUtZ1fZQoaAZoCWgPQwiWCb/Uj+FxQJSGlFKUaBVLlmgWR0CmbbrsjVx0dX2UKGgGaAloD0MI2pJVEe6rcUCUhpRSlGgVS8BoFkdApm3Ky+pOvnV9lChoBmgJaA9DCKwfm+TH2XFAlIaUUpRoFUu7aBZHQKZt+OBlMAZ1fZQoaAZoCWgPQwg0v5oDhAFxQJSGlFKUaBVLrGgWR0CmbgALZzxPdX2UKGgGaAloD0MIgZICC+BOcECUhpRSlGgVS6loFkdApm4Ky8jAz3V9lChoBmgJaA9DCEM7p1lgZ3NAlIaUUpRoFUvLaBZHQKZuFQk5ZKZ1fZQoaAZoCWgPQwjWxAJfkW5wQJSGlFKUaBVLpmgWR0CmbkMdkrf+dX2UKGgGaAloD0MIdhcoKXDnckCUhpRSlGgVS8doFkdApm5P6oESunV9lChoBmgJaA9DCMJLcOqDGXJAlIaUUpRoFUuYaBZHQKZuWy4Wk8B1fZQoaAZoCWgPQwiaJJaUuw1yQJSGlFKUaBVLw2gWR0CmbmBMzuWsdX2UKGgGaAloD0MINSTusXQzckCUhpRSlGgVS7toFkdApm5rDQ7cPHV9lChoBmgJaA9DCD4mUprNeHFAlIaUUpRoFUu8aBZHQKZueuyu6mR1fZQoaAZoCWgPQwjPLXQlAvRxQJSGlFKUaBVLtWgWR0CmboSnDR+jdX2UKGgGaAloD0MIC34bYrxkcUCUhpRSlGgVS61oFkdApm6aqwQlKXV9lChoBmgJaA9DCNeH9Ubt+nJAlIaUUpRoFUvVaBZHQKZu+F0xM391fZQoaAZoCWgPQwh720yF+PFyQJSGlFKUaBVLxWgWR0CmbwrLpzLfdX2UKGgGaAloD0MI2LrUCD1Ac0CUhpRSlGgVS9RoFkdApm8N3jdYXHV9lChoBmgJaA9DCKwahLldzXJAlIaUUpRoFUu+aBZHQKZvEfapPyl1fZQoaAZoCWgPQwjhzoWRHl1zQJSGlFKUaBVLv2gWR0CmbzZQ53kgdX2UKGgGaAloD0MIWwpI+x9mckCUhpRSlGgVS9FoFkdApm89e+mFanV9lChoBmgJaA9DCPjGEAAco0tAlIaUUpRoFUuFaBZHQKZvR3ztkWh1fZQoaAZoCWgPQwhKCFbVS4JxQJSGlFKUaBVLvWgWR0Cmb3QID5j6dX2UKGgGaAloD0MI/tXjvlW0c0CUhpRSlGgVS/BoFkdApm+E7bL2YnV9lChoBmgJaA9DCJYgI6ACLXRAlIaUUpRoFUvtaBZHQKZvg+eOGTN1fZQoaAZoCWgPQwjqlbIMcf1uQJSGlFKUaBVLm2gWR0Cmb5TMzMzNdX2UKGgGaAloD0MIjSRBuML4cECUhpRSlGgVS7ZoFkdApm+bdLxqf3V9lChoBmgJaA9DCPiqlQm//HFAlIaUUpRoFUukaBZHQKZvn41P3zt1fZQoaAZoCWgPQwh2ilWDcLZxQJSGlFKUaBVL6GgWR0Cmb8oMKCxvdX2UKGgGaAloD0MIzuLFwhA9c0CUhpRSlGgVS9VoFkdApm/jpgTh53V9lChoBmgJaA9DCJrtCn2wYHNAlIaUUpRoFUvNaBZHQKZv8PXCj1x1fZQoaAZoCWgPQwiCcXDpGGBwQJSGlFKUaBVLr2gWR0Cmb/3Cj1wpdX2UKGgGaAloD0MIpmPOM3bUcECUhpRSlGgVS7RoFkdApnAQMSbpeXV9lChoBmgJaA9DCN9RY0LMPHJAlIaUUpRoFUucaBZHQKZwGm6XjVB1fZQoaAZoCWgPQwh07QvohTZxQJSGlFKUaBVLs2gWR0CmcBx7AtWddX2UKGgGaAloD0MIB8+EJkkfcUCUhpRSlGgVS5BoFkdApnBhmbsniXV9lChoBmgJaA9DCI1Cklm9R3JAlIaUUpRoFUvHaBZHQKZwnocJdB11fZQoaAZoCWgPQwi/1M+bSl1yQJSGlFKUaBVLnWgWR0CmcKX0f5k9dX2UKGgGaAloD0MIdck4RrKrcUCUhpRSlGgVS7BoFkdApnCpCv5gxHV9lChoBmgJaA9DCIaOHVTi3XJAlIaUUpRoFUvRaBZHQKZwr7MPjGV1fZQoaAZoCWgPQwjYYrfPKid0QJSGlFKUaBVL82gWR0CmcLt5le4TdX2UKGgGaAloD0MI9pmzPiXRckCUhpRSlGgVS9JoFkdApnC58IAwPHV9lChoBmgJaA9DCKXZPA7DDXFAlIaUUpRoFUu0aBZHQKZwwZ5Rjz91fZQoaAZoCWgPQwjIW65+bK9yQJSGlFKUaBVLxmgWR0CmcN/TspocdX2UKGgGaAloD0MIzNHj9/agc0CUhpRSlGgVS9BoFkdApnEK1eBxxXV9lChoBmgJaA9DCKSIDKs47HJAlIaUUpRoFUvGaBZHQKZxClLOAy51fZQoaAZoCWgPQwikxK7trShzQJSGlFKUaBVL3mgWR0CmcSDZtelbdX2UKGgGaAloD0MImiLA6V1DckCUhpRSlGgVS6doFkdApnE3YODraHV9lChoBmgJaA9DCBCyLJj4yXFAlIaUUpRoFUuxaBZHQKZxQRtgrpd1fZQoaAZoCWgPQwgRVmMJ61VxQJSGlFKUaBVLrmgWR0CmcUfDLr5ZdX2UKGgGaAloD0MIoYMu4dC3cECUhpRSlGgVS6RoFkdApnFQd4mkWXV9lChoBmgJaA9DCF9dFagF5XBAlIaUUpRoFUu+aBZHQKZxfQLNOdp1ZS4=" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 424, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": { ":type:": "", ":serialized:": "gAWVhgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFZDOlxVc2Vyc1x1dmQyMFwudmlydHVhbGVudnNcQ1YtZW52XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null }