--- language: - en license: llama2 library_name: transformers tags: - llama-2 - code datasets: - jondurbin/airoboros-2.2 - Open-Orca/OpenOrca - garage-bAInd/Open-Platypus - WizardLM/WizardLM_evol_instruct_V2_196k - TokenBender/python_eval_instruct_51k pipeline_tag: text-generation model-index: - name: SpeechlessCoder results: - task: type: text-generation dataset: name: HumanEval type: openai_humaneval metrics: - type: pass@1 value: 52.439 name: pass@1 verified: false - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 41.21 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uukuguy/speechless-coding-7b-16k-tora name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 64.45 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uukuguy/speechless-coding-7b-16k-tora name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 39.14 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uukuguy/speechless-coding-7b-16k-tora name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 44.91 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uukuguy/speechless-coding-7b-16k-tora name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 63.61 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uukuguy/speechless-coding-7b-16k-tora name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 17.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uukuguy/speechless-coding-7b-16k-tora name: Open LLM Leaderboard ---

speechless-coding-7b-16k-tora

Use the following dataset to fine-tune llm_agents/tora-code-7b-v1.0 in order to improve the model's reasoning and planning abilities. context window length: 16,384 prompt_type = "alpaca" max_tokens > 128 && < 16384 > Total 177,333 samples 316 MB - jondurbin/airoboros-2.2: Filter categories related to coding, reasoning and planning. 21,923 samples. - Open-Orca/OpenOrca: Filter the 'cot' category in 1M GPT4 dataset. 62,973 samples. - garage-bAInd/Open-Platypus: 100%, 22,760 samples. - WizardLM/WizardLM_evol_instruct_V2_196k: Coding coversation part. 30,081 samples - TokenBender/python_eval_instruct_51k: “python” in output .39,596 samples 50 samples/T=0.2/MaxTokens=512/Top_P=0.95 Code: https://github.com/uukuguy/speechless ## How to Prompt the Model This model accepts the Alpaca instruction format. For example: ``` You are an intelligent programming assistant. ### Instruction: Implement a linked list in C++ ### Response: ``` ## HumanEval | Metric | Value | | --- | --- | | humaneval-python | 52.44 | [Big Code Models Leaderboard](https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard) CodeLlama-34B-Python: 53.29 CodeLlama-34B-Instruct: 50.79 CodeLlama-13B-Instruct: 50.6 CodeLlama-34B: 45.11 CodeLlama-13B-Python: 42.89 CodeLlama-13B: 35.07 ## MultiPL-E | Metric | Value | | --- | --- | | python | 55.96 | | java | 37.84 | | javascript | 46.93 | | cpp | 37.48 | | rust | 29.01 | | go | 28.99 | | sh | 12.11 | | julia | 31.47 | | typescript | 47.80 | ## LMEval [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | Metric | Value | | --- | --- | | ARC | | | HellaSwag | | | MMLU | | | TruthfulQA | | | Average | | ## Parameters | | | |------ | ------ | | lr | 2e-4 | | lr_scheduler_type | cosine | | weight_decay | 0.0 | | optim | paged_adamw_8bit | | flash_attention | True | | rerope | False | | max_new_tokens | 16384 | | num_train_epochs | 2 | | bits | 4 | | lora_r | 64 | | lora_alpha | 256 | | lora_dropout | 0.05 | | double_quant | True | | quant_type | nf4 | | dataset_format | sharegpt | | mini_batch_size | 2 | | grandient_accumulation_steps | 32 | | bf16 | True | A100-40G x 4 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_uukuguy__speechless-coding-7b-16k-tora) | Metric |Value| |---------------------------------|----:| |Avg. |45.10| |AI2 Reasoning Challenge (25-Shot)|41.21| |HellaSwag (10-Shot) |64.45| |MMLU (5-Shot) |39.14| |TruthfulQA (0-shot) |44.91| |Winogrande (5-shot) |63.61| |GSM8k (5-shot) |17.29|