---
language:
- en
library_name: transformers
pipeline_tag: text-generation
datasets:
- jondurbin/airoboros-2.2
- Open-Orca/OpenOrca
- garage-bAInd/Open-Platypus
- WizardLM/WizardLM_evol_instruct_V2_196k
- TokenBender/python_eval_instruct_51k
tags:
- code
license: apache-2.0
model-index:
- name: SpeechlessCoder
results:
- task:
type: text-generation
dataset:
type: openai_humaneval
name: HumanEval
metrics:
- name: pass@1
type: pass@1
value: 51.21951219512195
verified: false
---
speechless-code-mistral-7b-v1.0
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GGUF)
Code: https://github.com/uukuguy/speechless
Use the following dataset to fine-tune mistralai/Mistral-7B-v0.1 in order to improve the model's reasoning and planning abilities.
Total 201,981 samples.
- jondurbin/airoboros-2.2: Filter categories related to coding, reasoning and planning. 23,462 samples.
- Open-Orca/OpenOrca: Filter the 'cot' category in 1M GPT4 dataset. 74,440 samples.
- garage-bAInd/Open-Platypus: 100%, 24,926 samples.
- WizardLM/WizardLM_evol_instruct_V2_196k: Coding coversation part. 30,185 samples
- TokenBender/python_eval_instruct_51k: “python” in output .40,309 samples
- Spider: 8,659 samples
## How to Prompt the Model
This model accepts the Alpaca instruction format.
For example:
```
You are an intelligent programming assistant.
### Instruction:
Implement a linked list in C++
### Response:
```
## HumanEval
| Metric | Value |
| --- | --- |
| humaneval-python | 51.21951219512195|
## Big Code Evaluation
| | Humaneval | Java | Javascript | CPP | Php | Rust | Swift | R | Lua | D | Racket | Julia |
| ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ |
| pass@1 | 0.4260 | 0.3165 | 0.4241 | 0.3467 | 0.3548 | 0.2454 | 0.0000 | 0.1735 | 0.2942 | 0.1087 | 0.0000 | 0.3081 |
| pass@10 | 0.5784 | 0.4506 | 0.5891 | 0.4845 | 0.4997 | 0.3858 | 0.0000 | 0.2516 | 0.4126 | 0.2018 | 0.0000 | 0.4427 |
[Big Code Models Leaderboard](https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard)
CodeLlama-34B-Python: 53.29
CodeLlama-34B-Instruct: 50.79
CodeLlama-13B-Instruct: 50.6
CodeLlama-34B: 45.11
CodeLlama-13B-Python: 42.89
CodeLlama-13B: 35.07
## lm-evaluation-harness
```json
{'ARC (acc_norm)': 0.6109215017064846,
'HellaSwag (acc_norm)': 0.8358892650866361,
'MMLU (acc)': 0.6325456394049195,
'TruthfulQA (mc2)': 0.4746745250371087,
'Winoground (acc)': 0.7829518547750592,
'GSM8K (acc)': 0.467778620166793,
'DROP (f1)': 0.49585675335570545,
'Open LLM Score': 0.61437428571428571}
```
[Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
| Metric | Value |
| --- | --- |
| ARC |60.58 |
| HellaSwag |83.47 |
| MMLU | 62.98 |
| TruthfulQA | 47.9 |
| Winoground | 78.69 |
| GSM8K | 19.18 |
| Average | 58.85 |
## Parameters
| | |
|------ | ------ |
| lr | 2e-4 |
| lr_scheduler_type | cosine |
| weight_decay | 0.0 |
| optim | paged_adamw_8bit |
| flash_attention | True |
| rerope | False |
| max_new_tokens | 4096 |
| num_train_epochs | 2 |
| bits | 4 |
| lora_r | 64 |
| lora_alpha | 16 |
| lora_dropout | 0.05 |
| double_quant | True |
| quant_type | nf4 |
| dataset_format | airoboros |
| mini_batch_size | 2 |
| grandient_accumulation_steps | 32 |
| bf16 | True |
A40-48G x 2
| | |
|------ | ------ |
| epoch | 2.0 |
| etrain_loss | 0.5 |
| etrain_runtime | 1 day, 10:25:26.77 |
| etrain_samples_per_second | 3.194 |
| etrain_steps_per_second | 0.025 |
| eeval_loss | 0.5146 |
| eeval_runtime | 0:00:25.04 |
| eeval_samples_per_second | 7.985 |
| eeval_steps_per_second | |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_uukuguy__speechless-code-mistral-7b-v1.0)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 53.47 |
| ARC (25-shot) | 60.58 |
| HellaSwag (10-shot) | 83.75 |
| MMLU (5-shot) | 62.98 |
| TruthfulQA (0-shot) | 47.9 |
| Winogrande (5-shot) | 78.69 |
| GSM8K (5-shot) | 19.18 |
| DROP (3-shot) | 21.19 |