--- license: mit base_model: microsoft/layoutlm-base-uncased tags: - generated_from_trainer model-index: - name: layoutlmv3-custom_no_text results: [] --- # layoutlmv3-custom_no_text This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2406 - eval_noise: {'precision': 0.772093023255814, 'recall': 0.8019323671497585, 'f1': 0.7867298578199052, 'number': 621} - eval_signal: {'precision': 0.7472868217054264, 'recall': 0.77491961414791, 'f1': 0.7608524072612471, 'number': 622} - eval_overall_precision: 0.7597 - eval_overall_recall: 0.7884 - eval_overall_f1: 0.7738 - eval_overall_accuracy: 0.9518 - eval_runtime: 1.0449 - eval_samples_per_second: 34.452 - eval_steps_per_second: 4.785 - epoch: 19.0 - step: 342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0