import trimesh import numpy as np from copy import deepcopy from PIL import Image from . import color_mappings def line(p1, p2, c=(255,0,0), resolution=10, radius=0.05): '''draws a 3d cylinder along the line (p1, p2)''' # check colors if len(c) == 1: c = [c[0]]*4 elif len(c) == 3: c = [*c, 255] elif len(c) != 4: raise ValueError(f'{c} is not a valid color (must have 1,3, or 4 elements).') # compute length and direction of segment p1, p2 = np.asarray(p1), np.asarray(p2) l = np.linalg.norm(p2-p1) direction = (p2 - p1) / l # point z along direction of segment T = np.eye(4) T[:3, 2] = direction T[:3, 3] = (p1+p2)/2 #reorthogonalize basis b0, b1 = T[:3, 0], T[:3, 1] if np.abs(np.dot(b0, direction)) < np.abs(np.dot(b1, direction)): T[:3, 1] = -np.cross(b0, direction) else: T[:3, 0] = np.cross(b1, direction) # generate and transform mesh mesh = trimesh.primitives.Cylinder(radius=radius, height=l, transform=T) # apply uniform color mesh.visual.vertex_colors = np.ones_like(mesh.visual.vertex_colors)*c return mesh def show_wf(row, radius=10): EDGE_CLASSES = ['eave', 'ridge', 'step_flashing', 'rake', 'flashing', 'post', 'valley', 'hip', 'transition_line'] if 'edge_semantics' not in row: print ("Warning: edge semantics is not here, skipping") return [line(a,b, radius=radius, c=(214, 251, 248)) for a,b in np.stack([*row['wf_vertices']])[np.stack(row['wf_edges'])]] elif len(np.stack(row['wf_edges'])) == len(row['edge_semantics']): return [line(a,b, radius=radius, c=color_mappings.gestalt_color_mapping[EDGE_CLASSES[cls_id]]) for (a,b), cls_id in zip(np.stack([*row['wf_vertices']])[np.stack(row['wf_edges'])], row['edge_semantics'])] else: print ("Warning: edge semantics has different length compared to edges, skipping semantics") return [line(a,b, radius=radius, c=(214, 251, 248)) for a,b in np.stack([*row['wf_vertices']])[np.stack(row['wf_edges'])]] # return [line(a,b, radius=radius, c=color_mappings.edge_colors[cls_id]) for (a,b), cls_id in zip(np.stack([*row['wf_vertices']])[np.stack(row['wf_edges'])], row['edge_semantics'])] def show_grid(edges, meshes=None, row_length=5): ''' edges: list of list of meshes meshes: optional corresponding list of meshes row_length: number of meshes per row returns trimesh.Scene() ''' T = np.eye(4) out = [] edges = [sum(e[1:], e[0]) for e in edges] row_height = 1.1 * max((e.extents for e in edges), key=lambda e: e[1])[1] col_width = 1.1 * max((e.extents for e in edges), key=lambda e: e[0])[0] # print(row_height, col_width) if meshes is None: meshes = [None]*len(edges) for i, (gt, mesh) in enumerate(zip(edges, meshes), start=0): mesh = deepcopy(mesh) gt = deepcopy(gt) if i%row_length != 0: T[0, 3] += col_width else: T[0, 3] = 0 T[1, 3] += row_height # print(T[0,3]/col_width, T[2,3]/row_height) if mesh is not None: mesh.apply_transform(T) out.append(mesh) gt.apply_transform(T) out.append(gt) out.extend([mesh, gt]) return trimesh.Scene(out) def visualize_order_images(row_order): return create_image_grid(row_order['ade20k'] + row_order['gestalt'] + [visualize_depth(dm) for dm in row_order['depthcm']], num_per_row=len(row_order['ade20k'])) def create_image_grid(images, target_length=312, num_per_row=2): # Calculate the target size for the first image first_img = images[0] aspect_ratio = first_img.width / first_img.height new_width = int((target_length ** 2 * aspect_ratio) ** 0.5) new_height = int((target_length ** 2 / aspect_ratio) ** 0.5) # Resize the first image resized_images = [img.resize((new_width, new_height), Image.Resampling.LANCZOS) for img in images] # Calculate the grid size num_rows = (len(resized_images) + num_per_row - 1) // num_per_row grid_width = new_width * num_per_row grid_height = new_height * num_rows # Create a new image for the grid grid_img = Image.new('RGB', (grid_width, grid_height)) # Paste the images into the grid for i, img in enumerate(resized_images): x_offset = (i % num_per_row) * new_width y_offset = (i // num_per_row) * new_height grid_img.paste(img, (x_offset, y_offset)) return grid_img import matplotlib.pyplot as plt def visualize_depth(depth, min_depth=None, max_depth=None, cmap='rainbow'): depth = np.array(depth) if min_depth is None: min_depth = np.min(depth) if max_depth is None: max_depth = np.max(depth) # Normalize the depth to be between 0 and 1 depth = (depth - min_depth) / (max_depth - min_depth) depth = np.clip(depth, 0, 1) # Use the matplotlib colormap to convert the depth to an RGB image cmap = plt.get_cmap(cmap) depth_image = (cmap(depth) * 255).astype(np.uint8) # Convert the depth image to a PIL image depth_image = Image.fromarray(depth_image) return depth_image