File size: 18,705 Bytes
de945d6 94b29d2 de945d6 94b29d2 de945d6 1d8fc5d de945d6 541cafc de945d6 b4db141 de945d6 94b29d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
---
language:
- en
license: mit
library_name: transformers
tags:
- nlp
license_link: https://huggingface.co/upstage/solar-pro-preview-instruct/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: solar-pro-preview-instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 73.97
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=upstage/solar-pro-preview-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 66.76
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=upstage/solar-pro-preview-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 56.13
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=upstage/solar-pro-preview-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 93.87
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=upstage/solar-pro-preview-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 75.41
name: pearson
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=upstage/solar-pro-preview-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 77.52
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=upstage/solar-pro-preview-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 81.6
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=upstage/solar-pro-preview-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 69.73
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=upstage/solar-pro-preview-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 68.22
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=upstage/solar-pro-preview-instruct
name: Open Portuguese LLM Leaderboard
---
<p align="left">
<a href="https://go.upstage.ai/3Xk9J6X">
<img src="https://cdn-uploads.huggingface.co/production/uploads/5fd90c758fe27b1a6b077abb/jwMkqV88Hj8sJu7NjTedm.png" width="100%"/>
</a>
<p>
# **Solar Pro Preview: The most intelligent LLM on a single GPU**
# **Summary**
We introduce **Solar Pro Preview**, an advanced large language model (LLM) with 22 billion parameters designed to [fit into a single GPU](https://www.upstage.ai/products/solar-pro-preview?utm_source=%08platform&utm_medium=huggingface&utm_campaign=solarpro-preview-launch). Solar Pro Preview shows superior performance compared to LLMs with less than 30 billion parameters and delivers performance comparable to models over three times its size, such as Llama 3.1 with 70 billion parameters.
Solar Pro Preview is developed using an enhanced version of our previous depth up-scaling method, which scales a Phi-3-medium model with 14 billion parameters to 22 billion parameters, intended to run on a GPU with 80GB of VRAM. Our carefully curated training strategy and dataset have significantly enhanced performance from Phi-3-medium, particularly on the MMLU-Pro and IFEval benchmarks, both respected for evaluating a model’s knowledge and instruction-following abilities.
Solar Pro Preview is a pre-release version of the official Solar Pro, with limitations on language coverage and a maximum context length of 4K. However, we believe Solar Pro Preview not only stands out as a highly efficient and capable model, but has the potential to be further extended to cover more languages and capabilities. The official version of Solar Pro will be released this November 2024 with expanded language support beyond English and longer context windows. To stay informed about the latest updates, please sign up for [our mailing list](https://www.upstage.ai/get-upstage-updates). If you have any feedback or questions about the model, please visit our [model discussion board](https://huggingface.co/upstage/solar-pro-preview-instruct/discussions) and connect with us directly.
# **Usage**
Solar Pro Preview is an instruction-tuned language model. This model is specifically designed to follow instructions and engage in conversational tasks.
### Chat Template
As an instruction-tuned model, Solar Pro Preview uses the ChatML template for optimal performance in conversational and instruction-following tasks. This approach aligns with the model's training data and is likely to yield more accurate and relevant responses. For instance, a question formatted in the ChatML template looks like the following, where the model generates the answer after <|im_start|>assistant. Note that system prompts are not currently supported in Solar Pro Preview. This feature will be available in the official release.
```
<|im_start|>user
Please, introduce yourself.<|im_end|>
<|im_start|>assistant
```
### Text Generation
Below is an example inference code that details loading the model, applying the chat template, and generating the model answer.
```python
# Install requirements
# !pip install transformers==4.44.2 torch==2.3.1 flash_attn==2.5.8 accelerate==0.31.0
# Load model
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("upstage/solar-pro-preview-instruct")
model = AutoModelForCausalLM.from_pretrained(
"upstage/solar-pro-preview-instruct",
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
)
# Apply chat template
messages = [
{"role": "user", "content": "Please, introduce yourself."},
]
prompt = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(model.device)
# Generate text
outputs = model.generate(prompt, max_new_tokens=512)
print(tokenizer.decode(outputs[0]))
```
Solar Pro Preview is also available as an API in [Upstage Console](https://go.upstage.ai/3Xl0Hqv) and we provide other easy-to-use methods as well. If you'd like to explore these options, please visit our [blog page](https://www.upstage.ai/products/solar-pro-preview?utm_source=%08platform&utm_medium=huggingface&utm_campaign=solarpro-preview-launch).
# **Evaluation**
Solar Pro Preview is evaluated over a variety of benchmarks.
| | Solar-pro-preview | Phi-3-medium-4K-instruct | Phi-3.5-MoE-instruct | Gemma 2 27B IT | Llama-3.1-8B-instruct | Llama-3.1-70B-instruct |
| ------------- | :---------------: | :----------------------: | :------------------: | :----------------------------------------: | :-------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------: |
| *Release Date* | 2024.09.08 | 2024.05.02 | 2024.08.20 | 2024.06.25 | 2024.06.18 | 2024.06.16 |
| *Model size* | 22B | 14B | 41.9B (6.6B) | 27B | 8B | 70B |
| *License* | MIT | MIT | MIT | [gemma](https://ai.google.dev/gemma/terms) | [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE) | [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE) |
| **MMLU** | 79.14 | 78.02 | 78.66 | 76.13 | 68.25 | 82.09 |
| **MMLU Pro** | 52.11 | 47.51 | 46.99 | 45.68 | 37.88 | 53.01 |
| **IFEval** | 84.37 | 64.37 | 69.15 | 75.36 | 77.40 | 84.13 |
| **ARC-C** | 68.86 | 66.55 | 68.34 | 74.06 | 60.24 | 70.39 |
| **GPQA** | 36.38 | 35.78 | 34.38 | 36.38 | 35.26 | 41.06 |
| **HellaSwag** | 86.36 | 85.68 | 85.97 | 86.02 | 80.08 | 86.42 |
| **EQBench** | 77.91 | 76.78 | 77.22 | 80.32 | 65.80 | 82.52 |
| **BigBench Hard** | 67.31 | 63.09 | 62.58 | 64.88 | 51.06 | 69.54 |
| **MUSR** | 45.85 | 42.28 | 46.79 | 45.67 | 29.68 | 47.22 |
| **GSM8K** | 89.69 | 84.76 | 82.26 | 62.85 | 75.97 | 92.12 |
| **MBPP** | 61.59 | 60.27 | N/A (\*) | 63.08 | 52.20 | 65.51 |
(*) Since the model tends to generate a chat template, the score can't be accurately determined.
### Evaluation Protocol
For easy reproduction of our evaluation results, we list the evaluation tools and settings used below. All evaluations are conducted with NVIDIA DGX H100.
| | Evaluation setting | Metric | Evaluation tool |
| ------------- | :-------------------- | :------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------- |
| MMLU | 5-shot | macro_avg / acc | [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/928e8bb6f50d1e93ef5d0bcaa81f8c5fd9a6f4d8) #928e8bb |
| MMLU Pro | 5-shot | macro_avg / acc | [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/928e8bb6f50d1e93ef5d0bcaa81f8c5fd9a6f4d8) #928e8bb |
| IFEval | 0-shot, chat_template | mean of prompt_level_strict_acc and instruction_level_strict_acc | [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/928e8bb6f50d1e93ef5d0bcaa81f8c5fd9a6f4d8) #928e8bb |
| ARC-C | 25-shot | acc_norm | [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/928e8bb6f50d1e93ef5d0bcaa81f8c5fd9a6f4d8) #928e8bb |
| GPQA | 0-shot | acc_norm | [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/928e8bb6f50d1e93ef5d0bcaa81f8c5fd9a6f4d8) #928e8bb |
| HellaSwag | 10-shot | acc_norm | [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/928e8bb6f50d1e93ef5d0bcaa81f8c5fd9a6f4d8) #928e8bb |
| EQBench | 0-shot, chat_template | eqbench score | [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/928e8bb6f50d1e93ef5d0bcaa81f8c5fd9a6f4d8) #928e8bb |
| BigBench Hard | 3-shot | macro_avg / acc_norm | [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/928e8bb6f50d1e93ef5d0bcaa81f8c5fd9a6f4d8) #928e8bb |
| MUSR | 0-shot | macro_avg / acc_norm | [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/928e8bb6f50d1e93ef5d0bcaa81f8c5fd9a6f4d8) #928e8bb |
| GSM8K | 8-shot, CoT | acc, exact_match & strict_extract | [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/928e8bb6f50d1e93ef5d0bcaa81f8c5fd9a6f4d8) #928e8bb |
| MBPP | 0-shot | pass@1 | [bigcode-evaluation-harness](https://github.com/bigcode-project/bigcode-evaluation-harness/tree/0f3e95f0806e78a4f432056cdb1be93604a51d69) #0f3e95f |
The results may vary slightly for different batch sizes and experimental environment such as GPU type.
# **Contact us**
For any questions and suggestions regarding the model, please visit the [discussion board](https://huggingface.co/upstage/solar-pro-preview-instruct/discussions).
Learn more:
- [Chat with Solar Pro Preview](https://chat.upstage.ai)
- [Solar Pro Preview blog](https://www.upstage.ai/products/solar-pro-preview)
- [Solar Pro Preview developer documents](https://developers.upstage.ai/docs/apis/chat?utm_campaign=solarpro-preview-launch)
Also try out:
- [Document Parse](http://developers.upstage.ai/docs/apis/document-parse?utm_campaign=solarpro-preview-launch): An industry-leading model for converting complex document files to LLM-compatible HTML formats.
- [Solar DocVision Preview](http://developers.upstage.ai/docs/apis/document-qa?utm_campaign=solarpro-preview-launch): A vision LLM specialized on documents.
# Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/upstage/solar-pro-preview-instruct) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)
| Metric | Value |
|--------------------------|---------|
|Average |**73.69**|
|ENEM Challenge (No Images)| 73.97|
|BLUEX (No Images) | 66.76|
|OAB Exams | 56.13|
|Assin2 RTE | 93.87|
|Assin2 STS | 75.41|
|FaQuAD NLI | 77.52|
|HateBR Binary | 81.60|
|PT Hate Speech Binary | 69.73|
|tweetSentBR | 68.22|
|