--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2495 - Precision: 0.9509 - Recall: 0.9509 - F1: 0.9509 - Accuracy: 0.9649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1482 | 1.0 | 4261 | 0.3301 | 0.8673 | 0.8935 | 0.8802 | 0.9128 | | 0.0901 | 2.0 | 8522 | 0.2701 | 0.9100 | 0.9186 | 0.9143 | 0.9468 | | 0.0523 | 3.0 | 12783 | 0.2614 | 0.9252 | 0.9290 | 0.9271 | 0.9506 | | 0.0392 | 4.0 | 17044 | 0.2636 | 0.9109 | 0.9280 | 0.9193 | 0.9447 | | 0.0288 | 5.0 | 21305 | 0.2724 | 0.9276 | 0.9363 | 0.9319 | 0.9499 | | 0.0189 | 6.0 | 25566 | 0.2642 | 0.9257 | 0.9363 | 0.9310 | 0.9570 | | 0.0108 | 7.0 | 29827 | 0.2196 | 0.9437 | 0.9457 | 0.9447 | 0.9622 | | 0.012 | 8.0 | 34088 | 0.2320 | 0.9447 | 0.9457 | 0.9452 | 0.9649 | | 0.0044 | 9.0 | 38349 | 0.2859 | 0.9252 | 0.9426 | 0.9338 | 0.9594 | | 0.0049 | 10.0 | 42610 | 0.2989 | 0.9344 | 0.9374 | 0.9359 | 0.9589 | | 0.0034 | 11.0 | 46871 | 0.2862 | 0.9498 | 0.9478 | 0.9488 | 0.9618 | | 0.0021 | 12.0 | 51132 | 0.2443 | 0.9530 | 0.9520 | 0.9525 | 0.9675 | | 0.0027 | 13.0 | 55393 | 0.2549 | 0.95 | 0.9520 | 0.9510 | 0.9646 | | 0.0018 | 14.0 | 59654 | 0.2439 | 0.9499 | 0.9499 | 0.9499 | 0.9663 | | 0.0019 | 15.0 | 63915 | 0.2495 | 0.9509 | 0.9509 | 0.9509 | 0.9649 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3