--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- # distilbert-base-uncased-finetuned-ner This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0768 - Precision: 0.9783 - Recall: 0.9739 - F1: 0.9761 - Accuracy: 0.9865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0109 | 1.0 | 5372 | 0.0469 | 0.9828 | 0.9799 | 0.9813 | 0.9901 | | 0.0068 | 2.0 | 10744 | 0.0598 | 0.9790 | 0.9761 | 0.9776 | 0.9885 | | 0.0032 | 3.0 | 16116 | 0.1658 | 0.9715 | 0.9679 | 0.9697 | 0.9839 | | 0.0048 | 4.0 | 21488 | 0.1680 | 0.9774 | 0.9679 | 0.9726 | 0.9835 | | 0.0055 | 5.0 | 26860 | 0.0526 | 0.9835 | 0.9806 | 0.9821 | 0.9911 | | 0.0034 | 6.0 | 32232 | 0.0569 | 0.9813 | 0.9776 | 0.9794 | 0.9906 | | 0.0024 | 7.0 | 37604 | 0.0671 | 0.9820 | 0.9784 | 0.9802 | 0.9906 | | 0.0021 | 8.0 | 42976 | 0.0606 | 0.9835 | 0.9776 | 0.9805 | 0.9908 | | 0.0022 | 9.0 | 48348 | 0.0658 | 0.9857 | 0.9806 | 0.9832 | 0.9911 | | 0.002 | 10.0 | 53720 | 0.1342 | 0.9767 | 0.9716 | 0.9742 | 0.9857 | | 0.0017 | 11.0 | 59092 | 0.0768 | 0.9783 | 0.9739 | 0.9761 | 0.9865 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3