6.1 kB
--- | |
language: Chinese | |
datasets: CLUECorpusSmall | |
widget: | |
- text: "作为电子extra0的平台,京东绝对是领先者。如今的刘强extra1已经是身价过extra2的老板。" | |
--- | |
# Chinese T5 Version 1.1 | |
## Model description | |
This is the set of Chinese T5 Version 1.1 models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). | |
**Version 1.1** | |
Chinese T5 Version 1.1 includes the following improvements compared to our Chinese T5 model: | |
- GEGLU activation in feed-forward hidden layer, rather than ReLU | |
- Dropout was turned off in pre-training | |
- no parameter sharing between embedding and classifier layer | |
You can download the set of Chinese T5 Version 1.1 models either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | |
| | Link | | |
| ----------------- | :----------------------------: | | |
| **T5-v1_1-Small** | [**L=8/H=512 (Small)**][small] | | |
| **T5-v1_1-Base** | [**L=12/H=768 (Base)**][base] | | |
In T5 Version 1.1, spans of the input sequence are masked by so-called sentinel token. Each sentinel token represents a unique mask token for the input sequence and should start with `<extra_id_0>`, `<extra_id_1>`, … up to `<extra_id_99>`. However, `<extra_id_xxx>` is separated into multiple parts in Huggingface's Hosted inference API. Therefore, we replace `<extra_id_xxx>` with `extraxxx` in vocabulary and BertTokenizer regards `extraxxx` as one sentinel token. | |
## How to use | |
You can use this model directly with a pipeline for text2text generation (take the case of T5-v1_1-Small): | |
```python | |
>>> from transformers import BertTokenizer, MT5ForConditionalGeneration, Text2TextGenerationPipeline | |
>>> tokenizer = BertTokenizer.from_pretrained("uer/t5-v1_1-small-chinese-cluecorpussmall") | |
>>> model = MT5ForConditionalGeneration.from_pretrained("uer/t5-v1_1-small-chinese-cluecorpussmall") | |
>>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer) | |
>>> text2text_generator("中国的首都是extra0京", max_length=50, do_sample=False) | |
[{'generated_text': 'extra0 北 extra1 extra2 extra3 extra4 extra5'}] | |
``` | |
## Training data | |
[CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. | |
## Training procedure | |
The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. | |
Taking the case of T5-v1_1-Small | |
Stage1: | |
``` | |
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ | |
--vocab_path models/google_zh_with_sentinel_vocab.txt \ | |
--dataset_path cluecorpussmall_t5-v1_1_seq128_dataset.pt \ | |
--processes_num 32 --seq_length 128 \ | |
--dynamic_masking --data_processor t5 | |
``` | |
``` | |
python3 pretrain.py --dataset_path cluecorpussmall_t5-v1_1_seq128_dataset.pt \ | |
--vocab_path models/google_zh_with_sentinel_vocab.txt \ | |
--config_path models/t5-v1_1/small_config.json \ | |
--output_model_path models/cluecorpussmall_t5-v1_1_small_seq128_model.bin \ | |
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ | |
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ | |
--learning_rate 1e-3 --batch_size 64 \ | |
--span_masking --span_geo_prob 0.3 --span_max_length 5 | |
``` | |
Stage2: | |
``` | |
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ | |
--vocab_path models/google_zh_with_sentinel_vocab.txt \ | |
--dataset_path cluecorpussmall_t5-v1_1_seq512_dataset.pt \ | |
--processes_num 32 --seq_length 512 \ | |
--dynamic_masking --data_processor t5 | |
``` | |
``` | |
python3 pretrain.py --dataset_path cluecorpussmall_t5-v1_1_seq512_dataset.pt \ | |
--pretrained_model_path models/cluecorpussmall_t5-v1_1_small_seq128_model.bin-1000000 \ | |
--vocab_path models/google_zh_with_sentinel_vocab.txt \ | |
--config_path models/t5-v1_1/small_config.json \ | |
--output_model_path models/cluecorpussmall_t5-v1_1_small_seq512_model.bin \ | |
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ | |
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ | |
--learning_rate 5e-4 --batch_size 16 \ | |
--span_masking --span_geo_prob 0.3 --span_max_length 5 | |
``` | |
Finally, we convert the pre-trained model into Huggingface's format: | |
``` | |
python3 scripts/convert_t5_from_uer_to_huggingface.py --input_model_path cluecorpussmall_t5_small_seq512_model.bin-250000 \ | |
--output_model_path pytorch_model.bin \ | |
--layers_num 8 \ | |
--type t5-v1_1 | |
``` | |
### BibTeX entry and citation info | |
``` | |
@article{2020t5, | |
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, | |
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, | |
journal = {Journal of Machine Learning Research}, | |
pages = {1-67}, | |
year = {2020} | |
} | |
@article{zhao2019uer, | |
title={UER: An Open-Source Toolkit for Pre-training Models}, | |
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, | |
journal={EMNLP-IJCNLP 2019}, | |
pages={241}, | |
year={2019} | |
} | |
``` | |
[small]:https://huggingface.co/uer/t5-v1_1-small-chinese-cluecorpussmall | |
[base]:https://huggingface.co/uer/t5-v1_1-base-chinese-cluecorpussmall |