hhou435's picture Update 9736dc3
language: Chinese
datasets: CLUECorpusSmall
- text: "作为电子[MASK]的平台,京东绝对是领先者。如今的刘强[MASK]已经是身价过[MASK]的老板。"
# Chinese BART
## Model description
This model is pre-trained by [UER-py](https://arxiv.org/abs/1909.05658).
## How to use
You can use this model directly with a pipeline for text2text generation :
>>> from transformers import BertTokenizer, BartForConditionalGeneration, Text2TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/bart-chinese-4-768-cluecorpussmall")
>>> model = BartForConditionalGeneration.from_pretrained("uer/bart-chinese-4-768-cluecorpussmall")
>>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer)
>>> text2text_generator("中国的首都是[MASK]京", max_length=50, do_sample=False)
[{'generated_text': '中 国 的 首 都 是 北 京'}]
## Training data
[CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) Common Crawl and some short messages are used as training data.
## Training procedure
The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 512.
we convert the pre-trained model into Huggingface's format:
python3 scripts/convert_bart_from_uer_to_huggingface.py --input_model_path cluecorpussmall_bart_medium_seq512_model.bin-250000 \
--output_model_path pytorch_model.bin \
--layers_num 4
### BibTeX entry and citation info
title={Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension},
author={Lewis, Mike and Liu, Yinhan and Goyal, Naman and Ghazvininejad, Marjan and Mohamed, Abdelrahman and Levy, Omer and Stoyanov, Ves and Zettlemoyer, Luke},
journal={arXiv preprint arXiv:1910.13461},
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},