--- library_name: transformers language: - udm --- # Zerpal-Glot500 ## How to use You can use this model directly with a pipeline for masked language modeling: ```py from transformers import pipeline unmasker = pipeline('fill-mask', model='udmurtNLP/zerpal-glot500', tokenizer='cis-lmu/glot500-base') unmasker("Ӟечбур! Мынам нимы .") ``` Here is how to use this model to get the features of a given text in PyTorch: ```py from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained('cis-lmu/glot500-base') model = AutoModelForMaskedLM.from_pretrained("udmurtNLP/zerpal-glot500") text = "Яратон, яратон, мар меда сыӵе тон?" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ```