--- license: apache-2.0 base_model: facebook/wav2vec2-large-lv60 tags: - generated_from_trainer datasets: - ami metrics: - wer model-index: - name: wav2vec2-large-ami-fine-tuned results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: ami type: ami config: ihm split: None args: ihm metrics: - name: Wer type: wer value: 0.8711243810697664 --- # wav2vec2-large-ami-fine-tuned This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the ami dataset. It achieves the following results on the evaluation set: - Loss: 0.9830 - Wer: 0.8711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00014 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 1.5455 | 0.1565 | 1000 | 1.3698 | 0.8373 | | 1.3019 | 0.3131 | 2000 | 0.7275 | 0.4146 | | 0.9922 | 0.4696 | 3000 | 0.6047 | 0.3663 | | 0.5129 | 0.6262 | 4000 | 0.5773 | 0.3658 | | 0.85 | 0.7827 | 5000 | 0.5387 | 0.3538 | | 1.4588 | 0.9393 | 6000 | 0.5581 | 0.3326 | | 0.2646 | 1.0958 | 7000 | 0.5216 | 0.3294 | | 0.1923 | 1.2523 | 8000 | 0.4975 | 0.3159 | | 0.2897 | 1.4089 | 9000 | 0.4757 | 0.3066 | | 0.1536 | 1.5654 | 10000 | 0.4784 | 0.3066 | | 0.3964 | 1.7220 | 11000 | 0.4899 | 0.3097 | | 1.1026 | 1.8785 | 12000 | 0.9830 | 0.8711 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0a0+gitcd033a1 - Datasets 2.19.1 - Tokenizers 0.19.1