--- pipeline_tag: text-classification tags: - sentence-transformers - feature-extraction - sentence-similarity - Setfit --- # {Setfit_youtube_comments} This is a [Setfit](https://github.com/huggingface/setfit) model: It maps sentences to a n dimensional dense vector space and can be used for classification of text into question or not_question class. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) and setfit installed: ``` pip install -U sentence-transformers pip install setfit ``` Then you can use the model like this: ```python from setfit import SetFitModel model = SetFitModel.from_pretrained("tushifire/setfit_youtube_comments_is_a_question") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) print(preds) preds = model(["""what video do I watch that takes the html_output and insert it into the actual html page?""", "Why does for loop end without a break statement"]) print(preds) ``` ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 80 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 800, "warmup_steps": 80, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors