--- library_name: peft license: mit base_model: deepseek-ai/Deepseek-R1-Distill-Qwen-32B tags: - alignment-handbook - trl - sft - generated_from_trainer datasets: - tttx/r1-trajectories-collection-round-2 - tttx/r1-trajectories-arcagi-barc model-index: - name: qwen-32b-sft-full-arcagi-barc results: [] --- # qwen-32b-sft-full-arcagi-barc This model is a fine-tuned version of [deepseek-ai/Deepseek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/Deepseek-R1-Distill-Qwen-32B) on the tttx/r1-trajectories-collection-round-2 and the tttx/r1-trajectories-arcagi-barc datasets. It achieves the following results on the evaluation set: - Loss: 0.4392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4064 | 1.0 | 328 | 0.4612 | | 0.3589 | 2.0 | 656 | 0.4404 | | 0.3656 | 3.0 | 984 | 0.4399 | | 0.3443 | 4.0 | 1312 | 0.4392 | ### Framework versions - PEFT 0.13.2 - Transformers 4.47.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3