--- library_name: peft license: mit base_model: deepseek-ai/Deepseek-R1-Distill-Qwen-32B tags: - alignment-handbook - trl - sft - generated_from_trainer datasets: - tttx/r1-trajectories-arcagi-barc - tttx/r1-masked-arcagi-v1 - tttx/r1-barc-r1-feb-6 - tttx/r1-masked-feb-6-p2 - tttx/r1-masked-feb-6-p1 - tttx/r1-trajectories-collection-round-2 model-index: - name: 15k_sft_020525 results: [] --- # 15k_sft_020525 This model is a fine-tuned version of [deepseek-ai/Deepseek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/Deepseek-R1-Distill-Qwen-32B) on the tttx/r1-trajectories-arcagi-barc, the tttx/r1-masked-arcagi-v1, the tttx/r1-barc-r1-feb-6, the tttx/r1-masked-feb-6-p2, the tttx/r1-masked-feb-6-p1 and the tttx/r1-trajectories-collection-round-2 datasets. It achieves the following results on the evaluation set: - Loss: 0.4883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4154 | 1.0 | 526 | 0.4942 | | 0.4029 | 2.0 | 1052 | 0.4883 | ### Framework versions - PEFT 0.13.2 - Transformers 4.47.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3