tsmatz commited on
Commit
5eb78ce
1 Parent(s): fc1fc55

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - question-answering
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: roberta_qa_japanese
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # roberta_qa_japanese
15
+
16
+ This model is a fine-tuned version of [rinna/japanese-roberta-base](https://huggingface.co/rinna/japanese-roberta-base) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0516
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 7e-05
38
+ - train_batch_size: 2
39
+ - eval_batch_size: 1
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 16
42
+ - total_train_batch_size: 32
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 100
46
+ - num_epochs: 3
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss |
51
+ |:-------------:|:-----:|:----:|:---------------:|
52
+ | 2.1293 | 0.13 | 150 | 1.0311 |
53
+ | 1.1965 | 0.26 | 300 | 0.6723 |
54
+ | 1.022 | 0.39 | 450 | 0.4838 |
55
+ | 0.9594 | 0.53 | 600 | 0.5174 |
56
+ | 0.9187 | 0.66 | 750 | 0.4671 |
57
+ | 0.8229 | 0.79 | 900 | 0.4650 |
58
+ | 0.71 | 0.92 | 1050 | 0.2648 |
59
+ | 0.5436 | 1.05 | 1200 | 0.2665 |
60
+ | 0.5045 | 1.19 | 1350 | 0.2686 |
61
+ | 0.5025 | 1.32 | 1500 | 0.2082 |
62
+ | 0.5213 | 1.45 | 1650 | 0.1715 |
63
+ | 0.4648 | 1.58 | 1800 | 0.1563 |
64
+ | 0.4698 | 1.71 | 1950 | 0.1488 |
65
+ | 0.4823 | 1.84 | 2100 | 0.1050 |
66
+ | 0.4482 | 1.97 | 2250 | 0.0821 |
67
+ | 0.2755 | 2.11 | 2400 | 0.0898 |
68
+ | 0.2834 | 2.24 | 2550 | 0.0964 |
69
+ | 0.2525 | 2.37 | 2700 | 0.0533 |
70
+ | 0.2606 | 2.5 | 2850 | 0.0561 |
71
+ | 0.2467 | 2.63 | 3000 | 0.0601 |
72
+ | 0.2799 | 2.77 | 3150 | 0.0562 |
73
+ | 0.2497 | 2.9 | 3300 | 0.0516 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.23.1
79
+ - Pytorch 1.12.1+cu102
80
+ - Datasets 2.6.1
81
+ - Tokenizers 0.13.1