--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - trl - dpo - generated_from_trainer model-index: - name: mistralit2_500_STEPS_1e8_rate_03_beta_DPO results: [] --- # mistralit2_500_STEPS_1e8_rate_03_beta_DPO This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6903 - Rewards/chosen: -0.0048 - Rewards/rejected: -0.0113 - Rewards/accuracies: 0.5121 - Rewards/margins: 0.0065 - Logps/rejected: -28.6101 - Logps/chosen: -23.4018 - Logits/rejected: -2.8650 - Logits/chosen: -2.8653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-08 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6911 | 0.1 | 50 | 0.6909 | 0.0027 | -0.0025 | 0.4967 | 0.0052 | -28.5807 | -23.3768 | -2.8653 | -2.8655 | | 0.6916 | 0.2 | 100 | 0.6928 | -0.0010 | -0.0023 | 0.4571 | 0.0014 | -28.5802 | -23.3891 | -2.8653 | -2.8655 | | 0.6931 | 0.29 | 150 | 0.6916 | -0.0047 | -0.0087 | 0.4659 | 0.0040 | -28.6014 | -23.4015 | -2.8652 | -2.8654 | | 0.6922 | 0.39 | 200 | 0.6914 | -0.0046 | -0.0090 | 0.4681 | 0.0044 | -28.6024 | -23.4011 | -2.8651 | -2.8654 | | 0.6921 | 0.49 | 250 | 0.6927 | -0.0086 | -0.0103 | 0.4747 | 0.0017 | -28.6067 | -23.4145 | -2.8651 | -2.8653 | | 0.6938 | 0.59 | 300 | 0.6916 | -0.0092 | -0.0132 | 0.4835 | 0.0040 | -28.6163 | -23.4163 | -2.8651 | -2.8654 | | 0.6976 | 0.68 | 350 | 0.6907 | -0.0058 | -0.0116 | 0.4747 | 0.0058 | -28.6111 | -23.4052 | -2.8651 | -2.8654 | | 0.6918 | 0.78 | 400 | 0.6902 | -0.0069 | -0.0137 | 0.4967 | 0.0068 | -28.6182 | -23.4089 | -2.8651 | -2.8653 | | 0.6862 | 0.88 | 450 | 0.6903 | -0.0048 | -0.0113 | 0.5121 | 0.0065 | -28.6101 | -23.4018 | -2.8650 | -2.8653 | | 0.6946 | 0.98 | 500 | 0.6903 | -0.0048 | -0.0113 | 0.5121 | 0.0065 | -28.6101 | -23.4018 | -2.8650 | -2.8653 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.0.0+cu117 - Datasets 2.18.0 - Tokenizers 0.15.2