--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 model-index: - name: twitter_emotions results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion args: default metrics: - type: accuracy value: 0.9375 name: Accuracy --- # twitter_emotions This model is a fine-tuned version of [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1647 - Accuracy: 0.9375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2486 | 1.0 | 2000 | 0.2115 | 0.931 | | 0.135 | 2.0 | 4000 | 0.1725 | 0.936 | | 0.1041 | 3.0 | 6000 | 0.1647 | 0.9375 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3