--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - ja datasets: - kinokokoro/ichikara-instruction-003 --- # Uploaded model - **Developed by:** trikudayodayodayo - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b # Overview This repository provides a Japanese Large Language Model finetuned on ichikara datasets # supervised-fintuning Thme model was finetuned on a subset from mxture of the following dataset. Training epoch:1 - ichikara-instruction-003-001-1 - ichikara-instruction-003-001-2 - ichikara-instruction-003-001-2.2 - ichikara-instruction-003-003-5.1 - ichikara-instruction-003-003-5.2 - ichikara-instruction-003-002-1 - ichikara-instruction-003-003-1 Authors tsuchida rikuto How to Use To use this model, run the code below ```python !pip install -U bitsandbytes !pip install -U transformers !pip install -U accelerate !pip install -U datasets !pip install ipywidgets --upgrade from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) import torch from tqdm import tqdm import json model_name = "trikudayodayodayo/llm-jp-3-13b-it-1209_lora" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=False, ) HF_TOKEN="Type your HF_TOKEN" model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map="auto", token = HF_TOKEN ) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token = HF_TOKEN) input = "Type text here" tokenized_input = tokenizer.encode(input, add_special_tokens=False, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( tokenized_input, max_new_tokens=100, do_sample=False, repetition_penalty=1.2 )[0] output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) print(output) ```