Source code for transformers.models.gpt2.modeling_flax_gpt2

# coding=utf-8
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Optional, Tuple

import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from jax import lax

from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxBaseModelOutputWithPast, FlaxCausalLMOutput
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from ...utils import logging
from .configuration_gpt2 import GPT2Config


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "gpt2"
_CONFIG_FOR_DOC = "GPT2Config"
_TOKENIZER_FOR_DOC = "GPT2Tokenizer"


GPT2_START_DOCSTRING = r"""

    This model inherits from :class:`~transformers.FlaxPreTrainedModel`. Check the superclass documentation for the
    generic methods the library implements for all its model (such as downloading or saving, resizing the input
    embeddings, pruning heads etc.)

    This model is also a Flax Linen `flax.nn.Module
    <https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html>`__ subclass. Use it as a regular Flax
    Module and refer to the Flax documentation for all matter related to general usage and behavior.

    Finally, this model supports inherent JAX features such as:

    - `Just-In-Time (JIT) compilation <https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit>`__
    - `Automatic Differentiation <https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation>`__
    - `Vectorization <https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap>`__
    - `Parallelization <https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap>`__

    Parameters:
        config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.FlaxPreTrainedModel.from_pretrained` method to load the
            model weights.
"""

GPT2_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, input_ids_length)`):
            :obj:`input_ids_length` = ``sequence_length``. Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`~transformers.GPT2Tokenizer`. See
            :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
            details.

            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            `What are attention masks? <../glossary.html#attention-mask>`__
        position_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
            config.max_position_embeddings - 1]``.
        past_key_values (:obj:`Dict[str, np.ndarray]`, `optional`, returned by ``init_cache`` or when passing previous ``past_key_values``):
            Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
            auto-regressive decoding. Pre-computed key and value hidden-states are of shape `[batch_size, max_length]`.
        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""


class FlaxConv1D(nn.Module):
    features: int
    use_bias: bool = True
    dtype: Any = jnp.float32
    precision: Any = None

    @nn.compact
    def __call__(self, inputs):
        inputs = jnp.asarray(inputs, self.dtype)
        kernel = self.param("kernel", jax.nn.initializers.normal(stddev=0.02), (self.features, inputs.shape[-1]))
        kernel = jnp.asarray(kernel.transpose(), self.dtype)
        y = lax.dot_general(inputs, kernel, (((inputs.ndim - 1,), (0,)), ((), ())), precision=self.precision)
        if self.use_bias:
            bias = self.param("bias", jax.nn.initializers.zeros, (self.features,))
            bias = jnp.asarray(bias, self.dtype)
            y = y + bias
        return y


class FlaxGPT2Attention(nn.Module):
    config: GPT2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        config = self.config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads

        self.c_attn = FlaxConv1D(features=3 * self.embed_dim, dtype=self.dtype)
        self.c_proj = FlaxConv1D(self.embed_dim, dtype=self.dtype)
        self.resid_dropout = nn.Dropout(rate=config.resid_pdrop)
        self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool")

    def _split_heads(self, hidden_states):
        return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))

    def _merge_heads(self, hidden_states):
        return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))

    @nn.compact
    def _concatenate_to_cache(self, key, value, query, attention_mask):
        """
        This function takes projected key, value states from a single input token and concatenates the states to cached
        states from previous steps. This function is slighly adapted from the official Flax repository:
        https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
        """
        # detect if we're initializing by absence of existing cache data.
        is_initialized = self.has_variable("cache", "cached_key")
        cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
        cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
        cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))

        if is_initialized:
            *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
            # update key, value caches with our new 1d spatial slices
            cur_index = cache_index.value
            indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
            key = lax.dynamic_update_slice(cached_key.value, key, indices)
            value = lax.dynamic_update_slice(cached_value.value, value, indices)
            cached_key.value = key
            cached_value.value = value
            num_updated_cache_vectors = query.shape[1]
            cache_index.value = cache_index.value + num_updated_cache_vectors
            # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
            pad_mask = jnp.broadcast_to(
                jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
                tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
            )
            attention_mask = combine_masks(pad_mask, attention_mask)
        return key, value, attention_mask

    def __call__(
        self,
        hidden_states,
        attention_mask=None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
    ):
        qkv_out = self.c_attn(hidden_states)
        query, key, value = jnp.split(qkv_out, 3, axis=2)

        query = self._split_heads(query)
        key = self._split_heads(key)
        value = self._split_heads(value)

        query_length, key_length = query.shape[1], key.shape[1]

        if self.has_variable("cache", "cached_key"):
            mask_shift = self.variables["cache"]["cache_index"]
            max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
            causal_mask = lax.dynamic_slice(
                self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
            )
        else:
            causal_mask = self.causal_mask[:, :, :query_length, :key_length]

        batch_size = hidden_states.shape[0]
        causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])

        attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
        attention_mask = combine_masks(attention_mask, causal_mask)

        dropout_rng = None
        if not deterministic and self.config.attn_pdrop > 0.0:
            dropout_rng = self.make_rng("dropout")

        # During fast autoregressive decoding, we feed one position at a time,
        # and cache the keys and values step by step.
        if self.has_variable("cache", "cached_key") or init_cache:
            key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)

        # transform boolean mask into float mask
        attention_bias = lax.select(
            attention_mask > 0,
            jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
            jnp.full(attention_mask.shape, -1e4).astype(self.dtype),
        )

        # usual dot product attention
        attn_weights = dot_product_attention_weights(
            query,
            key,
            bias=attention_bias,
            dropout_rng=dropout_rng,
            dropout_rate=self.config.attn_pdrop,
            deterministic=deterministic,
            dtype=self.dtype,
            precision=None,
        )

        attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
        attn_output = self._merge_heads(attn_output)
        attn_output = self.c_proj(attn_output)
        attn_output = self.resid_dropout(attn_output, deterministic=deterministic)

        outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
        return outputs


class FlaxGPT2MLP(nn.Module):
    config: GPT2Config
    intermediate_size: int
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        embed_dim = self.config.hidden_size
        self.c_fc = FlaxConv1D(self.intermediate_size, dtype=self.dtype)
        self.c_proj = FlaxConv1D(embed_dim, dtype=self.dtype)
        self.act = ACT2FN[self.config.activation_function]
        self.dropout = nn.Dropout(rate=self.config.resid_pdrop)

    def __call__(self, hidden_states, deterministic: bool = True):
        hidden_states = self.c_fc(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.c_proj(hidden_states)
        hidden_states = self.dropout(hidden_states, deterministic=deterministic)
        return hidden_states


class FlaxGPT2Block(nn.Module):
    config: GPT2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        hidden_size = self.config.hidden_size
        inner_dim = self.config.n_inner if self.config.n_inner is not None else 4 * hidden_size

        self.ln_1 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
        self.attn = FlaxGPT2Attention(self.config, dtype=self.dtype)
        self.ln_2 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
        self.mlp = FlaxGPT2MLP(self.config, inner_dim, dtype=self.dtype)

    def __call__(
        self,
        hidden_states,
        attention_mask=None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
    ):
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        outputs = self.attn(
            hidden_states,
            attention_mask=attention_mask,
            deterministic=deterministic,
            init_cache=init_cache,
            output_attentions=output_attentions,
        )
        # residual connection
        attn_output = outputs[0]
        hidden_states = attn_output + residual

        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)
        feed_forward_hidden_states = self.mlp(hidden_states, deterministic=deterministic)
        # residual connection
        hidden_states = residual + feed_forward_hidden_states

        return (hidden_states,) + outputs[1:]


class FlaxGPT2PreTrainedModel(FlaxPreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = GPT2Config
    base_model_prefix = "transformer"
    module_class: nn.Module = None

    def __init__(
        self,
        config: GPT2Config,
        input_shape: Tuple = (1, 1),
        seed: int = 0,
        dtype: jnp.dtype = jnp.float32,
        **kwargs,
    ):
        module = self.module_class(config=config, dtype=dtype, **kwargs)
        super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)

    def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
        # init input tensors
        input_ids = jnp.zeros(input_shape, dtype="i4")
        attention_mask = jnp.ones_like(input_ids)
        position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
        params_rng, dropout_rng = jax.random.split(rng)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        return self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)["params"]

    def init_cache(self, batch_size, max_length):
        r"""
        Args:
            batch_size (:obj:`int`):
                batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
            max_length (:obj:`int`):
                maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
                cache.
        """
        # init input variables to retrieve cache
        input_ids = jnp.ones((batch_size, max_length))
        attention_mask = jnp.ones_like(input_ids)
        position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)

        init_variables = self.module.init(
            jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
        )
        return init_variables["cache"]

    @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
    def __call__(
        self,
        input_ids,
        attention_mask=None,
        position_ids=None,
        params: dict = None,
        past_key_values: dict = None,
        dropout_rng: jax.random.PRNGKey = None,
        train: bool = False,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        batch_size, sequence_length = input_ids.shape

        if position_ids is None:
            if past_key_values is not None:
                raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")

            position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))

        if attention_mask is None:
            attention_mask = jnp.ones((batch_size, sequence_length))

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        inputs = {"params": params or self.params}

        # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPT2Attention module
        if past_key_values:
            inputs["cache"] = past_key_values
            mutable = ["cache"]
        else:
            mutable = False

        outputs = self.module.apply(
            inputs,
            jnp.array(input_ids, dtype="i4"),
            jnp.array(attention_mask, dtype="i4"),
            jnp.array(position_ids, dtype="i4"),
            not train,
            False,
            output_attentions,
            output_hidden_states,
            return_dict,
            rngs=rngs,
            mutable=mutable,
        )

        # add updated cache to model output
        if past_key_values is not None and return_dict:
            outputs, past_key_values = outputs
            outputs["past_key_values"] = unfreeze(past_key_values["cache"])
            return outputs
        elif past_key_values is not None and not return_dict:
            outputs, past_key_values = outputs
            outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]

        return outputs


class FlaxGPT2BlockCollection(nn.Module):
    config: GPT2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.blocks = [
            FlaxGPT2Block(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
        ]

    def __call__(
        self,
        hidden_states,
        attention_mask=None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        all_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        for block in self.blocks:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            layer_outputs = block(
                hidden_states,
                attention_mask,
                deterministic=deterministic,
                init_cache=init_cache,
                output_attentions=output_attentions,
            )
            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions += (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        outputs = (hidden_states,)

        if not return_dict:
            return tuple(v for v in outputs if v is not None)

        return FlaxBaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=None,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
        )


class FlaxGPT2Module(nn.Module):
    config: GPT2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.embed_dim = self.config.hidden_size

        self.wte = nn.Embed(
            self.config.vocab_size,
            self.embed_dim,
            embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
            dtype=self.dtype,
        )
        self.wpe = nn.Embed(
            self.config.max_position_embeddings,
            self.embed_dim,
            embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
            dtype=self.dtype,
        )
        self.dropout = nn.Dropout(rate=self.config.embd_pdrop)
        self.h = FlaxGPT2BlockCollection(self.config, dtype=self.dtype)
        self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)

    def __call__(
        self,
        input_ids,
        attention_mask,
        position_ids,
        deterministic=True,
        init_cache: bool = False,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        input_embeds = self.wte(input_ids.astype("i4"))
        position_embeds = self.wpe(position_ids.astype("i4"))

        hidden_states = input_embeds + position_embeds
        hidden_states = self.dropout(hidden_states, deterministic=deterministic)

        outputs = self.h(
            hidden_states,
            attention_mask,
            deterministic=deterministic,
            init_cache=init_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        hidden_states = self.ln_f(hidden_states)

        if not return_dict:
            return (hidden_states,) + outputs[1:]

        return FlaxBaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


[docs]@add_start_docstrings( "The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.", GPT2_START_DOCSTRING, ) class FlaxGPT2Model(FlaxGPT2PreTrainedModel): module_class = FlaxGPT2Module
append_call_sample_docstring( FlaxGPT2Model, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC ) class FlaxGPT2LMHeadModule(nn.Module): config: GPT2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.transformer = FlaxGPT2Module(self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range, dtype=self.dtype), ) def __call__( self, input_ids, attention_mask, position_ids, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): outputs = self.transformer( input_ids, attention_mask, position_ids, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + outputs[1:] return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
[docs]@add_start_docstrings( """ The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, ) class FlaxGPT2LMHeadModel(FlaxGPT2PreTrainedModel): module_class = FlaxGPT2LMHeadModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since GPT2 uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs
append_call_sample_docstring( FlaxGPT2LMHeadModel, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC )