Blenderbot

DISCLAIMER: If you see something strange, file a Github Issue .

Overview

The Blender chatbot model was proposed in Recipes for building an open-domain chatbot Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston on 30 Apr 2020.

The abstract of the paper is the following:

Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that scaling neural models in the number of parameters and the size of the data they are trained on gives improved results, we show that other ingredients are important for a high-performing chatbot. Good conversation requires a number of skills that an expert conversationalist blends in a seamless way: providing engaging talking points and listening to their partners, and displaying knowledge, empathy and personality appropriately, while maintaining a consistent persona. We show that large scale models can learn these skills when given appropriate training data and choice of generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter models, and make our models and code publicly available. Human evaluations show our best models are superior to existing approaches in multi-turn dialogue in terms of engagingness and humanness measurements. We then discuss the limitations of this work by analyzing failure cases of our models.

This model was contributed by sshleifer. The authors’ code can be found here .

Implementation Notes

  • Blenderbot uses a standard seq2seq model transformer based architecture.

  • Available checkpoints can be found in the model hub.

  • This is the default Blenderbot model class. However, some smaller checkpoints, such as facebook/blenderbot_small_90M, have a different architecture and consequently should be used with BlenderbotSmall.

Usage

Here is an example of model usage:

>>> from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
>>> mname = 'facebook/blenderbot-400M-distill'
>>> model = BlenderbotForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = BlenderbotTokenizer.from_pretrained(mname)
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([UTTERANCE], return_tensors='pt')
>>> reply_ids = model.generate(**inputs)
>>> print(tokenizer.batch_decode(reply_ids))
["<s> That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?</s>"]

BlenderbotConfig

class transformers.BlenderbotConfig(vocab_size=8008, max_position_embeddings=128, encoder_layers=2, encoder_ffn_dim=10240, encoder_attention_heads=32, decoder_layers=24, decoder_ffn_dim=10240, decoder_attention_heads=32, encoder_layerdrop=0.0, decoder_layerdrop=0.0, use_cache=True, is_encoder_decoder=True, activation_function='gelu', d_model=2560, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=1, classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, encoder_no_repeat_ngram_size=3, forced_eos_token_id=2, **kwargs)[source]

This is the configuration class to store the configuration of a BlenderbotModel. It is used to instantiate an Blenderbot model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Blenderbot facebook/blenderbot-3B architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Parameters
  • vocab_size (int, optional, defaults to 50265) – Vocabulary size of the Blenderbot model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling BlenderbotModel or TFBlenderbotModel.

  • d_model (int, optional, defaults to 1024) – Dimensionality of the layers and the pooler layer.

  • encoder_layers (int, optional, defaults to 12) – Number of encoder layers.

  • decoder_layers (int, optional, defaults to 12) – Number of decoder layers.

  • encoder_attention_heads (int, optional, defaults to 16) – Number of attention heads for each attention layer in the Transformer encoder.

  • decoder_attention_heads (int, optional, defaults to 16) – Number of attention heads for each attention layer in the Transformer decoder.

  • decoder_ffn_dim (int, optional, defaults to 4096) – Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

  • encoder_ffn_dim (int, optional, defaults to 4096) – Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.

  • activation_function (str or function, optional, defaults to "gelu") – The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "silu" and "gelu_new" are supported.

  • dropout (float, optional, defaults to 0.1) – The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

  • attention_dropout (float, optional, defaults to 0.0) – The dropout ratio for the attention probabilities.

  • activation_dropout (float, optional, defaults to 0.0) – The dropout ratio for activations inside the fully connected layer.

  • classifier_dropout (float, optional, defaults to 0.0) – The dropout ratio for classifier.

  • max_position_embeddings (int, optional, defaults to 1024) – The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).

  • init_std (float, optional, defaults to 0.02) – The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

  • encoder_layerdrop – (float, optional, defaults to 0.0): The LayerDrop probability for the encoder. See the LayerDrop paper for more details.

  • decoder_layerdrop – (float, optional, defaults to 0.0): The LayerDrop probability for the decoder. See the LayerDrop paper for more details.

  • gradient_checkpointing (bool, optional, defaults to False) – If True, use gradient checkpointing to save memory at the expense of slower backward pass.

  • scale_embedding (bool, optional, defaults to False) – Scale embeddings by diving by sqrt(d_model).

  • use_cache (bool, optional, defaults to True) – Whether or not the model should return the last key/values attentions (not used by all models)

  • forced_eos_token_id (int, optional, defaults to 2) – The id of the token to force as the last generated token when max_length is reached. Usually set to eos_token_id.

Example:

>>> from transformers import BlenderbotModel, BlenderbotConfig

>>> # Initializing a Blenderbot facebook/blenderbot-3B style configuration
>>> configuration = BlenderbotConfig()

>>> # Initializing a model from the facebook/blenderbot-3B style configuration
>>> model = BlenderbotModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

BlenderbotTokenizer

class transformers.BlenderbotTokenizer(vocab_file, merges_file, errors='replace', bos_token='<s>', eos_token='</s>', sep_token='</s>', cls_token='<s>', unk_token='<unk>', pad_token='<pad>', mask_token='<mask>', add_prefix_space=False, **kwargs)[source]

Construct a Blenderbot tokenizer.

Blenderbot is nearly identical to RobertaTokenizer and runs end-to-end tokenization: punctuation splitting and wordpiece. The only difference is that it doesn’t add BOS token to the beginning of sequences.

Refer to superclass RobertaTokenizer for usage examples and documentation concerning parameters.

build_inputs_with_special_tokens(token_ids_0: List[int], token_ids_1: List[int] = None)[source]

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A Blenderbot sequence has the following format:

  • single sequence: `` X </s>``

Parameters
  • token_ids_0 (List[int]) – List of IDs to which the special tokens will be added

  • token_ids_1 (List[int], optional) – Will be ignored

Returns

list of input IDs with the appropriate special tokens.

Return type

List[int]

BlenderbotModel

See transformers.BartModel for arguments to forward and generate

class transformers.BlenderbotModel(config: transformers.models.blenderbot.configuration_blenderbot.BlenderbotConfig)[source]

The bare Blenderbot Model outputting raw hidden-states without any specific head on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BlenderbotConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]

The BlenderbotModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    Indices can be obtained using BlenderbotTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) –

    Indices of decoder input sequence tokens in the vocabulary.

    Indices can be obtained using BlenderbotTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are decoder input IDs?

    Blenderbot uses the bos_token_id as the starting token for decoder_input_ids generation. If past_key_values is used, optionally only the last decoder_input_ids have to be input (see past_key_values).

  • decoder_attention_mask (torch.LongTensor of shape (batch_size, target_sequence_length), optional) – Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.

  • head_mask (torch.Tensor of shape (encoder_layers, encoder_attention_heads), optional) –

    Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • decoder_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) –

    Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • cross_attn_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) –

    Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • encoder_outputs (tuple(tuple(torch.FloatTensor), optional) – Tuple consists of (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state of shape (batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.

  • past_key_values (Tuple[Tuple[torch.Tensor]] of length config.n_layers with each tuple having 2 tuples each of which has 2 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) –

    Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.

    If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids` of shape (batch_size, sequence_length).

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) –

    Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    If decoder_input_ids and decoder_inputs_embeds are both unset, decoder_inputs_embeds takes the value of inputs_embeds.

  • use_cache (bool, optional) – If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A Seq2SeqModelOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (BlenderbotConfig) and inputs.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the decoder of the model.

    If past_key_values is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size) is output.

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) – Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • decoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.

  • decoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • encoder_last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.

  • encoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.

  • encoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

Example:

>>> from transformers import BlenderbotTokenizer, BlenderbotModel

>>> model = BlenderbotModel.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-400M-distill")

>>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt").input_ids  # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids  # Batch size 1
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)

>>> last_hidden_states = outputs.last_hidden_state

Return type

Seq2SeqModelOutput or tuple(torch.FloatTensor)

BlenderbotForConditionalGeneration

See transformers.BartForConditionalGeneration for arguments to forward and generate

class transformers.BlenderbotForConditionalGeneration(config: transformers.models.blenderbot.configuration_blenderbot.BlenderbotConfig)[source]

The Blenderbot Model with a language modeling head. Can be used for summarization. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BlenderbotConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]

The BlenderbotForConditionalGeneration forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    Indices can be obtained using BlenderbotTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) –

    Indices of decoder input sequence tokens in the vocabulary.

    Indices can be obtained using BlenderbotTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are decoder input IDs?

    Blenderbot uses the bos_token_id as the starting token for decoder_input_ids generation. If past_key_values is used, optionally only the last decoder_input_ids have to be input (see past_key_values).

  • decoder_attention_mask (torch.LongTensor of shape (batch_size, target_sequence_length), optional) – Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.

  • head_mask (torch.Tensor of shape (encoder_layers, encoder_attention_heads), optional) –

    Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • decoder_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) –

    Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • cross_attn_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) –

    Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • encoder_outputs (tuple(tuple(torch.FloatTensor), optional) – Tuple consists of (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state of shape (batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.

  • past_key_values (Tuple[Tuple[torch.Tensor]] of length config.n_layers with each tuple having 2 tuples each of which has 2 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) –

    Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.

    If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids` of shape (batch_size, sequence_length).

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) –

    Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    If decoder_input_ids and decoder_inputs_embeds are both unset, decoder_inputs_embeds takes the value of inputs_embeds.

  • use_cache (bool, optional) – If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size] or -100 (see input_ids docstring). Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size].

Returns

A Seq2SeqLMOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (BlenderbotConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Language modeling loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) – Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • decoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.

  • decoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • encoder_last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.

  • encoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.

  • encoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

Seq2SeqLMOutput or tuple(torch.FloatTensor)

Conversation example:

>>> from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
>>> mname = 'facebook/blenderbot-400M-distill'
>>> model = BlenderbotForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = BlenderbotTokenizer.from_pretrained(mname)
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
>>> print("Human: ", UTTERANCE)
>>> inputs = tokenizer([UTTERANCE], return_tensors='pt')
>>> reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])

>>> REPLY = "I'm not sure"
>>> print("Human: ", REPLY)
>>> NEXT_UTTERANCE = (
... "My friends are cool but they eat too many carbs.</s> <s>That's unfortunate. "
... "Are they trying to lose weight or are they just trying to be healthier?</s> "
... "<s> I'm not sure."
... )
>>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors='pt')
>>> next_reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])

BlenderbotForCausalLM

class transformers.BlenderbotForCausalLM(config)[source]
forward(input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]
Args:
input_ids (torch.LongTensor of shape (batch_size, sequence_length)):

Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

Indices can be obtained using BlenderbotTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

What are input IDs?

attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional):

Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

  • 1 for tokens that are not masked,

  • 0 for tokens that are masked.

What are attention masks?

encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional):

Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional):

Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]:

head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional):

Mask to nullify selected heads of the attention modules. Mask values selected in [0, 1]:

  • 1 indicates the head is not masked,

  • 0 indicates the head is masked.

cross_attn_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional):

Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]:

  • 1 indicates the head is not masked,

  • 0 indicates the head is masked.

past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)):

Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.

If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length).

labels (torch.LongTensor of shape (batch_size, sequence_length), optional):

Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size] or -100 (see input_ids docstring). Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size].

use_cache (bool, optional):

If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).

  • 1 for tokens that are not masked,

  • 0 for tokens that are masked.

output_attentions (bool, optional):

Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

output_hidden_states (bool, optional):

Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

return_dict (bool, optional):

Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A CausalLMOutputWithCrossAttentions (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (BlenderbotConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Language modeling loss (for next-token prediction).

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) – Tuple of torch.FloatTensor tuples of length config.n_layers, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant if config.is_decoder = True.

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

Example:

>>> from transformers import BlenderbotTokenizer, BlenderbotForCausalLM

>>> tokenizer = BlenderbotTokenizer.from_pretrained('facebook/bart-large')
>>> model = BlenderbotForCausalLM.from_pretrained('facebook/bart-large', add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

Return type

CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

TFBlenderbotModel

class transformers.TFBlenderbotModel(*args, **kwargs)[source]

The bare BLENDERBOT Model outputting raw hidden-states without any specific head on top. This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

Parameters

config (BlenderbotConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[Union[Tuple, transformers.modeling_tf_outputs.TFBaseModelOutput]] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs)[source]

The TFBlenderbotModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (tf.Tensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BlenderbotTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (tf.Tensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • decoder_input_ids (tf.Tensor of shape (batch_size, target_sequence_length), optional) –

    Indices of decoder input sequence tokens in the vocabulary.

    Indices can be obtained using BlenderbotTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are decoder input IDs?

    Blenderbot uses the bos_token_id as the starting token for decoder_input_ids generation. If past_key_values is used, optionally only the last decoder_input_ids have to be input (see past_key_values).

  • decoder_attention_mask (tf.Tensor of shape (batch_size, target_sequence_length), optional) – will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.

  • head_mask (tf.Tensor of shape (encoder_layers, encoder_attention_heads), optional) –

    Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • decoder_head_mask (tf.Tensor of shape (decoder_layers, decoder_attention_heads), optional) –

    Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • cross_attn_head_mask (tf.Tensor of shape (decoder_layers, decoder_attention_heads), optional) –

    Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • encoder_outputs (tf.FloatTensor, optional) – hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape (batch_size, sequence_length, hidden_size) is a sequence of

  • past_key_values (Tuple[Tuple[tf.Tensor]] of length config.n_layers) – contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length).

  • use_cache (bool, optional, defaults to True) – If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values). Set to False during training, True during generation

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

  • training (bool, optional, defaults to False) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

Returns

A TFSeq2SeqModelOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of tf.Tensor comprising various elements depending on the configuration (BlenderbotConfig) and inputs.

  • last_hidden_state (tf.Tensor of shape (batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the decoder of the model.

    If past_key_values is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size) is output.

  • past_key_values (List[tf.Tensor], optional, returned when use_cache=True is passed or when config.use_cache=True) – List of tf.Tensor of length config.n_layers, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)).

    Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see past_key_values input) to speed up sequential decoding.

  • decoder_hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.

  • decoder_attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • encoder_last_hidden_state (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.

  • encoder_hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.

  • encoder_attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFSeq2SeqModelOutput or tuple(tf.Tensor)

Example:

>>> from transformers import BlenderbotTokenizer, TFBlenderbotModel
>>> import tensorflow as tf

>>> tokenizer = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-400M-distill')
>>> model = TFBlenderbotModel.from_pretrained('facebook/blenderbot-400M-distill')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFBlenderbotForConditionalGeneration

class transformers.TFBlenderbotForConditionalGeneration(*args, **kwargs)[source]

The BLENDERBOT Model with a language modeling head. Can be used for summarization. This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

Parameters

config (BlenderbotConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[transformers.modeling_tf_outputs.TFBaseModelOutput] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs)[source]

The TFBlenderbotForConditionalGeneration forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (tf.Tensor of shape ({0})) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using BlenderbotTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (tf.Tensor of shape ({0}), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • decoder_input_ids (tf.Tensor of shape (batch_size, target_sequence_length), optional) –

    Indices of decoder input sequence tokens in the vocabulary.

    Indices can be obtained using BlenderbotTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are decoder input IDs?

    Blenderbot uses the bos_token_id as the starting token for decoder_input_ids generation. If past_key_values is used, optionally only the last decoder_input_ids have to be input (see past_key_values).

  • decoder_attention_mask (tf.Tensor of shape (batch_size, target_sequence_length), optional) – will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.

  • head_mask (tf.Tensor of shape (encoder_layers, encoder_attention_heads), optional) –

    Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • decoder_head_mask (tf.Tensor of shape (decoder_layers, decoder_attention_heads), optional) –

    Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • cross_attn_head_mask (tf.Tensor of shape (decoder_layers, decoder_attention_heads), optional) –

    Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • encoder_outputs (tf.FloatTensor, optional) – hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape (batch_size, sequence_length, hidden_size) is a sequence of

  • past_key_values (Tuple[Tuple[tf.Tensor]] of length config.n_layers) – contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length).

  • use_cache (bool, optional, defaults to True) – If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values). Set to False during training, True during generation

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

  • training (bool, optional, defaults to False) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (tf.tensor of shape (batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size] or -100 (see input_ids docstring). Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size].

Returns

A TFSeq2SeqLMOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of tf.Tensor comprising various elements depending on the configuration (BlenderbotConfig) and inputs.

  • loss (tf.Tensor of shape (n,), optional, where n is the number of non-masked labels, returned when labels is provided) – Language modeling loss.

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • past_key_values (List[tf.Tensor], optional, returned when use_cache=True is passed or when config.use_cache=True) – List of tf.Tensor of length config.n_layers, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)).

    Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see past_key_values input) to speed up sequential decoding.

  • decoder_hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.

  • decoder_attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • encoder_last_hidden_state (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.

  • encoder_hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.

  • encoder_attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFSeq2SeqLMOutput or tuple(tf.Tensor)

Conversation example:

>>> from transformers import BlenderbotTokenizer, TFBlenderbotForConditionalGeneration
>>> mname = 'facebook/blenderbot-400M-distill'
>>> model = TFBlenderbotForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = BlenderbotTokenizer.from_pretrained(mname)
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
>>> print("Human: ", UTTERANCE)
>>> inputs = tokenizer([UTTERANCE], return_tensors='tf')
>>> reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])

>>> REPLY = "I'm not sure"
>>> print("Human: ", REPLY)
>>> NEXT_UTTERANCE = (
... "My friends are cool but they eat too many carbs.</s> <s>That's unfortunate. "
... "Are they trying to lose weight or are they just trying to be healthier?</s> "
... "<s> I'm not sure."
... )
>>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors='tf')
>>> next_reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])