Source code for transformers.models.layoutlm.modeling_tf_layoutlm

# coding=utf-8
# Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 LayoutLM model. """

import math
import warnings
from typing import Dict, Optional, Tuple, Union

import numpy as np
import tensorflow as tf

from ...activations_tf import get_tf_activation
from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...modeling_tf_outputs import (
    TFBaseModelOutput,
    TFBaseModelOutputWithPooling,
    TFMaskedLMOutput,
    TFSequenceClassifierOutput,
    TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
    TFMaskedLanguageModelingLoss,
    TFModelInputType,
    TFPreTrainedModel,
    TFSequenceClassificationLoss,
    TFTokenClassificationLoss,
    get_initializer,
    input_processing,
    keras_serializable,
    shape_list,
)
from ...utils import logging
from .configuration_layoutlm import LayoutLMConfig


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "LayoutLMConfig"
_TOKENIZER_FOR_DOC = "LayoutLMTokenizer"

TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "microsoft/layoutlm-base-uncased",
    "microsoft/layoutlm-large-uncased",
]


class TFLayoutLMEmbeddings(tf.keras.layers.Layer):
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config: LayoutLMConfig, **kwargs):
        super().__init__(**kwargs)

        self.vocab_size = config.vocab_size
        self.type_vocab_size = config.type_vocab_size
        self.hidden_size = config.hidden_size
        self.max_position_embeddings = config.max_position_embeddings
        self.max_2d_position_embeddings = config.max_2d_position_embeddings
        self.initializer_range = config.initializer_range
        self.embeddings_sum = tf.keras.layers.Add()
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
        self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)

    def build(self, input_shape: tf.TensorShape):
        with tf.name_scope("word_embeddings"):
            self.weight = self.add_weight(
                name="weight",
                shape=[self.vocab_size, self.hidden_size],
                initializer=get_initializer(self.initializer_range),
            )

        with tf.name_scope("token_type_embeddings"):
            self.token_type_embeddings = self.add_weight(
                name="embeddings",
                shape=[self.type_vocab_size, self.hidden_size],
                initializer=get_initializer(self.initializer_range),
            )

        with tf.name_scope("position_embeddings"):
            self.position_embeddings = self.add_weight(
                name="embeddings",
                shape=[self.max_position_embeddings, self.hidden_size],
                initializer=get_initializer(self.initializer_range),
            )

        with tf.name_scope("x_position_embeddings"):
            self.x_position_embeddings = self.add_weight(
                name="embeddings",
                shape=[self.max_2d_position_embeddings, self.hidden_size],
                initializer=get_initializer(self.initializer_range),
            )

        with tf.name_scope("y_position_embeddings"):
            self.y_position_embeddings = self.add_weight(
                name="embeddings",
                shape=[self.max_2d_position_embeddings, self.hidden_size],
                initializer=get_initializer(self.initializer_range),
            )

        with tf.name_scope("h_position_embeddings"):
            self.h_position_embeddings = self.add_weight(
                name="embeddings",
                shape=[self.max_2d_position_embeddings, self.hidden_size],
                initializer=get_initializer(self.initializer_range),
            )

        with tf.name_scope("w_position_embeddings"):
            self.w_position_embeddings = self.add_weight(
                name="embeddings",
                shape=[self.max_2d_position_embeddings, self.hidden_size],
                initializer=get_initializer(self.initializer_range),
            )

        super().build(input_shape)

    def call(
        self,
        input_ids: tf.Tensor = None,
        bbox: tf.Tensor = None,
        position_ids: tf.Tensor = None,
        token_type_ids: tf.Tensor = None,
        inputs_embeds: tf.Tensor = None,
        training: bool = False,
    ) -> tf.Tensor:
        """
        Applies embedding based on inputs tensor.

        Returns:
            final_embeddings (:obj:`tf.Tensor`): output embedding tensor.
        """
        assert not (input_ids is None and inputs_embeds is None)

        if input_ids is not None:
            inputs_embeds = tf.gather(params=self.weight, indices=input_ids)

        input_shape = shape_list(inputs_embeds)[:-1]

        if token_type_ids is None:
            token_type_ids = tf.fill(dims=input_shape, value=0)

        if position_ids is None:
            position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)

        if position_ids is None:
            position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)

        if bbox is None:
            bbox = bbox = tf.fill(input_shape + [4], value=0)
        try:
            left_position_embeddings = tf.gather(self.x_position_embeddings, bbox[:, :, 0])
            upper_position_embeddings = tf.gather(self.y_position_embeddings, bbox[:, :, 1])
            right_position_embeddings = tf.gather(self.x_position_embeddings, bbox[:, :, 2])
            lower_position_embeddings = tf.gather(self.y_position_embeddings, bbox[:, :, 3])
        except IndexError as e:
            raise IndexError("The :obj:`bbox`coordinate values should be within 0-1000 range.") from e
        h_position_embeddings = tf.gather(self.h_position_embeddings, bbox[:, :, 3] - bbox[:, :, 1])
        w_position_embeddings = tf.gather(self.w_position_embeddings, bbox[:, :, 2] - bbox[:, :, 0])

        position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
        position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1))
        token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
        final_embeddings = self.embeddings_sum(
            inputs=[
                inputs_embeds,
                position_embeds,
                token_type_embeds,
                left_position_embeddings,
                upper_position_embeddings,
                right_position_embeddings,
                lower_position_embeddings,
                h_position_embeddings,
                w_position_embeddings,
            ]
        )
        final_embeddings = self.LayerNorm(inputs=final_embeddings)
        final_embeddings = self.dropout(inputs=final_embeddings, training=training)

        return final_embeddings


# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->LayoutLM
class TFLayoutLMSelfAttention(tf.keras.layers.Layer):
    def __init__(self, config: LayoutLMConfig, **kwargs):
        super().__init__(**kwargs)

        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number "
                f"of attention heads ({config.num_attention_heads})"
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size
        self.sqrt_att_head_size = math.sqrt(self.attention_head_size)

        self.query = tf.keras.layers.Dense(
            units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
        )
        self.key = tf.keras.layers.Dense(
            units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
        )
        self.value = tf.keras.layers.Dense(
            units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
        )
        self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob)

    def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
        # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
        tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))

        # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
        return tf.transpose(tensor, perm=[0, 2, 1, 3])

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: tf.Tensor,
        head_mask: tf.Tensor,
        output_attentions: bool,
        training: bool = False,
    ) -> Tuple[tf.Tensor]:
        batch_size = shape_list(hidden_states)[0]
        mixed_query_layer = self.query(inputs=hidden_states)
        mixed_key_layer = self.key(inputs=hidden_states)
        mixed_value_layer = self.value(inputs=hidden_states)
        query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
        key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
        value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        # (batch size, num_heads, seq_len_q, seq_len_k)
        attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
        dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
        attention_scores = tf.divide(attention_scores, dk)

        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in TFLayoutLMModel call() function)
            attention_scores = tf.add(attention_scores, attention_mask)

        # Normalize the attention scores to probabilities.
        attention_probs = tf.nn.softmax(logits=attention_scores, axis=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(inputs=attention_probs, training=training)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = tf.multiply(attention_probs, head_mask)

        attention_output = tf.matmul(attention_probs, value_layer)
        attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])

        # (batch_size, seq_len_q, all_head_size)
        attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
        outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)

        return outputs


# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->LayoutLM
class TFLayoutLMSelfOutput(tf.keras.layers.Layer):
    def __init__(self, config: LayoutLMConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
        )
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
        self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)

    def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
        hidden_states = self.dense(inputs=hidden_states)
        hidden_states = self.dropout(inputs=hidden_states, training=training)
        hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)

        return hidden_states


# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->LayoutLM
class TFLayoutLMAttention(tf.keras.layers.Layer):
    def __init__(self, config: LayoutLMConfig, **kwargs):
        super().__init__(**kwargs)

        self.self_attention = TFLayoutLMSelfAttention(config, name="self")
        self.dense_output = TFLayoutLMSelfOutput(config, name="output")

    def prune_heads(self, heads):
        raise NotImplementedError

    def call(
        self,
        input_tensor: tf.Tensor,
        attention_mask: tf.Tensor,
        head_mask: tf.Tensor,
        output_attentions: bool,
        training: bool = False,
    ) -> Tuple[tf.Tensor]:
        self_outputs = self.self_attention(
            hidden_states=input_tensor,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            training=training,
        )
        attention_output = self.dense_output(
            hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
        )
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them

        return outputs


# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->LayoutLM
class TFLayoutLMIntermediate(tf.keras.layers.Layer):
    def __init__(self, config: LayoutLMConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
        )

        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = get_tf_activation(config.hidden_act)
        else:
            self.intermediate_act_fn = config.hidden_act

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        hidden_states = self.dense(inputs=hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)

        return hidden_states


# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->LayoutLM
class TFLayoutLMOutput(tf.keras.layers.Layer):
    def __init__(self, config: LayoutLMConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
        )
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
        self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)

    def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
        hidden_states = self.dense(inputs=hidden_states)
        hidden_states = self.dropout(inputs=hidden_states, training=training)
        hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)

        return hidden_states


# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->LayoutLM
class TFLayoutLMLayer(tf.keras.layers.Layer):
    def __init__(self, config: LayoutLMConfig, **kwargs):
        super().__init__(**kwargs)

        self.attention = TFLayoutLMAttention(config, name="attention")
        self.intermediate = TFLayoutLMIntermediate(config, name="intermediate")
        self.bert_output = TFLayoutLMOutput(config, name="output")

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: tf.Tensor,
        head_mask: tf.Tensor,
        output_attentions: bool,
        training: bool = False,
    ) -> Tuple[tf.Tensor]:
        attention_outputs = self.attention(
            input_tensor=hidden_states,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            training=training,
        )
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(hidden_states=attention_output)
        layer_output = self.bert_output(
            hidden_states=intermediate_output, input_tensor=attention_output, training=training
        )
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them

        return outputs


# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->LayoutLM
class TFLayoutLMEncoder(tf.keras.layers.Layer):
    def __init__(self, config: LayoutLMConfig, **kwargs):
        super().__init__(**kwargs)

        self.layer = [TFLayoutLMLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: tf.Tensor,
        head_mask: tf.Tensor,
        output_attentions: bool,
        output_hidden_states: bool,
        return_dict: bool,
        training: bool = False,
    ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_outputs = layer_module(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                head_mask=head_mask[i],
                output_attentions=output_attentions,
                training=training,
            )
            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)

        return TFBaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
        )


# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->LayoutLM
class TFLayoutLMPooler(tf.keras.layers.Layer):
    def __init__(self, config: LayoutLMConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.hidden_size,
            kernel_initializer=get_initializer(config.initializer_range),
            activation="tanh",
            name="dense",
        )

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(inputs=first_token_tensor)

        return pooled_output


# Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->LayoutLM
class TFLayoutLMPredictionHeadTransform(tf.keras.layers.Layer):
    def __init__(self, config: LayoutLMConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.hidden_size,
            kernel_initializer=get_initializer(config.initializer_range),
            name="dense",
        )

        if isinstance(config.hidden_act, str):
            self.transform_act_fn = get_tf_activation(config.hidden_act)
        else:
            self.transform_act_fn = config.hidden_act

        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        hidden_states = self.dense(inputs=hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(inputs=hidden_states)

        return hidden_states


# Copied from transformers.models.bert.modeling_tf_bert.TFBertLMPredictionHead with Bert->LayoutLM
class TFLayoutLMLMPredictionHead(tf.keras.layers.Layer):
    def __init__(self, config: LayoutLMConfig, input_embeddings: tf.keras.layers.Layer, **kwargs):
        super().__init__(**kwargs)

        self.vocab_size = config.vocab_size
        self.hidden_size = config.hidden_size

        self.transform = TFLayoutLMPredictionHeadTransform(config, name="transform")

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.input_embeddings = input_embeddings

    def build(self, input_shape: tf.TensorShape):
        self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias")

        super().build(input_shape)

    def get_output_embeddings(self) -> tf.keras.layers.Layer:
        return self.input_embeddings

    def set_output_embeddings(self, value: tf.Variable):
        self.input_embeddings.weight = value
        self.input_embeddings.vocab_size = shape_list(value)[0]

    def get_bias(self) -> Dict[str, tf.Variable]:
        return {"bias": self.bias}

    def set_bias(self, value: tf.Variable):
        self.bias = value["bias"]
        self.vocab_size = shape_list(value["bias"])[0]

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        hidden_states = self.transform(hidden_states=hidden_states)
        seq_length = shape_list(hidden_states)[1]
        hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
        hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
        hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.vocab_size])
        hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)

        return hidden_states


# Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->LayoutLM
class TFLayoutLMMLMHead(tf.keras.layers.Layer):
    def __init__(self, config: LayoutLMConfig, input_embeddings: tf.keras.layers.Layer, **kwargs):
        super().__init__(**kwargs)

        self.predictions = TFLayoutLMLMPredictionHead(config, input_embeddings, name="predictions")

    def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
        prediction_scores = self.predictions(hidden_states=sequence_output)

        return prediction_scores


@keras_serializable
class TFLayoutLMMainLayer(tf.keras.layers.Layer):
    config_class = LayoutLMConfig

    def __init__(self, config: LayoutLMConfig, add_pooling_layer: bool = True, **kwargs):
        super().__init__(**kwargs)

        self.config = config

        self.embeddings = TFLayoutLMEmbeddings(config, name="embeddings")
        self.encoder = TFLayoutLMEncoder(config, name="encoder")
        self.pooler = TFLayoutLMPooler(config, name="pooler") if add_pooling_layer else None

    def get_input_embeddings(self) -> tf.keras.layers.Layer:
        return self.embeddings

    def set_input_embeddings(self, value: tf.Variable):
        self.embeddings.weight = value
        self.embeddings.vocab_size = shape_list(value)[0]

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        raise NotImplementedError

    def call(
        self,
        input_ids: Optional[TFModelInputType] = None,
        bbox: Optional[Union[np.ndarray, tf.Tensor]] = None,
        attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
        token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
        position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
        head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
        inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
        **kwargs,
    ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
        inputs = input_processing(
            func=self.call,
            config=self.config,
            input_ids=input_ids,
            bbox=bbox,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
            kwargs_call=kwargs,
        )

        if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif inputs["input_ids"] is not None:
            input_shape = shape_list(inputs["input_ids"])
        elif inputs["inputs_embeds"] is not None:
            input_shape = shape_list(inputs["inputs_embeds"])[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if inputs["attention_mask"] is None:
            inputs["attention_mask"] = tf.fill(dims=input_shape, value=1)

        if inputs["token_type_ids"] is None:
            inputs["token_type_ids"] = tf.fill(dims=input_shape, value=0)
        if inputs["bbox"] is None:
            inputs["bbox"] = tf.fill(dims=input_shape + [4], value=0)

        embedding_output = self.embeddings(
            input_ids=inputs["input_ids"],
            bbox=inputs["bbox"],
            position_ids=inputs["position_ids"],
            token_type_ids=inputs["token_type_ids"],
            inputs_embeds=inputs["inputs_embeds"],
            training=inputs["training"],
        )

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = tf.reshape(inputs["attention_mask"], (input_shape[0], 1, 1, input_shape[1]))

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
        one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
        ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
        extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if inputs["head_mask"] is not None:
            raise NotImplementedError
        else:
            inputs["head_mask"] = [None] * self.config.num_hidden_layers

        encoder_outputs = self.encoder(
            hidden_states=embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=inputs["head_mask"],
            output_attentions=inputs["output_attentions"],
            output_hidden_states=inputs["output_hidden_states"],
            return_dict=inputs["return_dict"],
            training=inputs["training"],
        )

        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None

        if not inputs["return_dict"]:
            return (
                sequence_output,
                pooled_output,
            ) + encoder_outputs[1:]

        return TFBaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


class TFLayoutLMPreTrainedModel(TFPreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = LayoutLMConfig
    base_model_prefix = "layoutlm"


LAYOUTLM_START_DOCSTRING = r"""

    This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the
    generic methods the library implements for all its model (such as downloading or saving, resizing the input
    embeddings, pruning heads etc.)

    This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use
    it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage
    and behavior.

    .. note::

        TF 2.0 models accepts two formats as inputs:

        - having all inputs as keyword arguments (like PyTorch models), or
        - having all inputs as a list, tuple or dict in the first positional arguments.

        This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all
        the tensors in the first argument of the model call function: :obj:`model(inputs)`.

        If you choose this second option, there are three possibilities you can use to gather all the input Tensors in
        the first positional argument :

        - a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)`
        - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
          :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])`
        - a dictionary with one or several input Tensors associated to the input names given in the docstring:
          :obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`

    Args:
        config (:class:`~transformers.LayoutLMConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.TFPreTrainedModel.from_pretrained` method to load the
            model weights.
"""

LAYOUTLM_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`~transformers.LayoutLMTokenizer`. See
            :func:`transformers.PreTrainedTokenizer.__call__` and :func:`transformers.PreTrainedTokenizer.encode` for
            details.

            `What are input IDs? <../glossary.html#input-ids>`__
        bbox (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0}, 4)`, `optional`):
            Bounding Boxes of each input sequence tokens. Selected in the range ``[0,
            config.max_2d_position_embeddings- 1]``.
        attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            `What are attention masks? <../glossary.html#attention-mask>`__
        token_type_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
            1]``:

            - 0 corresponds to a `sentence A` token,
            - 1 corresponds to a `sentence B` token.

            `What are token type IDs? <../glossary.html#token-type-ids>`__
        position_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
            config.max_position_embeddings - 1]``.

            `What are position IDs? <../glossary.html#position-ids>`__
        head_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (:obj:`tf.Tensor` of shape :obj:`({0}, hidden_size)`, `optional`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
            vectors than the model's internal embedding lookup matrix.
        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
        training (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not to use the model in training mode (some modules like dropout modules have different
            behaviors between training and evaluation).
"""


[docs]@add_start_docstrings( "The bare LayoutLM Model transformer outputting raw hidden-states without any specific head on top.", LAYOUTLM_START_DOCSTRING, ) class TFLayoutLMModel(TFLayoutLMPreTrainedModel): def __init__(self, config: LayoutLMConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.layoutlm = TFLayoutLMMainLayer(config, name="layoutlm")
[docs] @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: Optional[TFModelInputType] = None, bbox: Optional[Union[np.ndarray, tf.Tensor]] = None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: r""" Returns: Examples:: >>> from transformers import LayoutLMTokenizer, TFLayoutLMModel >>> import tensorflow as tf >>> tokenizer = LayoutLMTokenizer.from_pretrained('microsoft/layoutlm-base-uncased') >>> model = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased') >>> words = ["Hello", "world"] >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] >>> token_boxes = [] >>> for word, box in zip(words, normalized_word_boxes): ... word_tokens = tokenizer.tokenize(word) ... token_boxes.extend([box] * len(word_tokens)) >>> # add bounding boxes of cls + sep tokens >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] >>> encoding = tokenizer(' '.join(words), return_tensors="tf") >>> input_ids = encoding["input_ids"] >>> attention_mask = encoding["attention_mask"] >>> token_type_ids = encoding["token_type_ids"] >>> bbox = tf.convert_to_tensor([token_boxes]) >>> outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids) >>> last_hidden_states = outputs.last_hidden_state """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) outputs = self.layoutlm( input_ids=inputs["input_ids"], bbox=inputs["bbox"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) return outputs
[docs] def serving_output(self, output: TFBaseModelOutputWithPooling) -> TFBaseModelOutputWithPooling: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFBaseModelOutputWithPooling( last_hidden_state=output.last_hidden_state, pooler_output=output.pooler_output, hidden_states=hs, attentions=attns, )
[docs]@add_start_docstrings("""LayoutLM Model with a `language modeling` head on top. """, LAYOUTLM_START_DOCSTRING) class TFLayoutLMForMaskedLM(TFLayoutLMPreTrainedModel, TFMaskedLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"cls.seq_relationship", r"cls.predictions.decoder.weight", r"nsp___cls", ] def __init__(self, config: LayoutLMConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if config.is_decoder: logger.warning( "If you want to use `TFLayoutLMForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.layoutlm = TFLayoutLMMainLayer(config, add_pooling_layer=True, name="layoutlm") self.mlm = TFLayoutLMMLMHead(config, input_embeddings=self.layoutlm.embeddings, name="mlm___cls")
[docs] def get_lm_head(self) -> tf.keras.layers.Layer: return self.mlm.predictions
[docs] def get_prefix_bias_name(self) -> str: warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name
[docs] @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: Optional[TFModelInputType] = None, bbox: Optional[Union[np.ndarray, tf.Tensor]] = None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (:obj:`tf.Tensor` or :obj:`np.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` Returns: Examples:: >>> from transformers import LayoutLMTokenizer, TFLayoutLMForMaskedLM >>> import tensorflow as tf >>> tokenizer = LayoutLMTokenizer.from_pretrained('microsoft/layoutlm-base-uncased') >>> model = TFLayoutLMForMaskedLM.from_pretrained('microsoft/layoutlm-base-uncased') >>> words = ["Hello", "[MASK]"] >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] >>> token_boxes = [] >>> for word, box in zip(words, normalized_word_boxes): ... word_tokens = tokenizer.tokenize(word) ... token_boxes.extend([box] * len(word_tokens)) >>> # add bounding boxes of cls + sep tokens >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] >>> encoding = tokenizer(' '.join(words), return_tensors="tf") >>> input_ids = encoding["input_ids"] >>> attention_mask = encoding["attention_mask"] >>> token_type_ids = encoding["token_type_ids"] >>> bbox = tf.convert_to_tensor([token_boxes]) >>> labels = tokenizer("Hello world", return_tensors="tf")["input_ids"] >>> outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, ... labels=labels) >>> loss = outputs.loss """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.layoutlm( input_ids=inputs["input_ids"], bbox=inputs["bbox"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] prediction_scores = self.mlm(sequence_output=sequence_output, training=inputs["training"]) loss = ( None if inputs["labels"] is None else self.compute_loss(labels=inputs["labels"], logits=prediction_scores) ) if not inputs["return_dict"]: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
[docs] def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMaskedLMOutput(logits=output.logits, hidden_states=hs, attentions=attns)
[docs]@add_start_docstrings( """ LayoutLM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, LAYOUTLM_START_DOCSTRING, ) class TFLayoutLMForSequenceClassification(TFLayoutLMPreTrainedModel, TFSequenceClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config: LayoutLMConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.layoutlm = TFLayoutLMMainLayer(config, name="layoutlm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", )
[docs] @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: Optional[TFModelInputType] = None, bbox: Optional[Union[np.ndarray, tf.Tensor]] = None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (:obj:`tf.Tensor` or :obj:`np.ndarray` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples:: >>> from transformers import LayoutLMTokenizer, TFLayoutLMForSequenceClassification >>> import tensorflow as tf >>> tokenizer = LayoutLMTokenizer.from_pretrained('microsoft/layoutlm-base-uncased') >>> model = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased') >>> words = ["Hello", "world"] >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] >>> token_boxes = [] >>> for word, box in zip(words, normalized_word_boxes): ... word_tokens = tokenizer.tokenize(word) ... token_boxes.extend([box] * len(word_tokens)) >>> # add bounding boxes of cls + sep tokens >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] >>> encoding = tokenizer(' '.join(words), return_tensors="tf") >>> input_ids = encoding["input_ids"] >>> attention_mask = encoding["attention_mask"] >>> token_type_ids = encoding["token_type_ids"] >>> bbox = tf.convert_to_tensor([token_boxes]) >>> sequence_label = tf.convert_to_tensor([1]) >>> outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, ... labels=sequence_label) >>> loss = outputs.loss >>> logits = outputs.logits """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.layoutlm( input_ids=inputs["input_ids"], bbox=inputs["bbox"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) pooled_output = outputs[1] pooled_output = self.dropout(inputs=pooled_output, training=inputs["training"]) logits = self.classifier(inputs=pooled_output) loss = None if inputs["labels"] is None else self.compute_loss(labels=inputs["labels"], logits=logits) if not inputs["return_dict"]: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
[docs] def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
[docs]@add_start_docstrings( """ LayoutLM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, LAYOUTLM_START_DOCSTRING, ) class TFLayoutLMForTokenClassification(TFLayoutLMPreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config: LayoutLMConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.layoutlm = TFLayoutLMMainLayer(config, add_pooling_layer=True, name="layoutlm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", )
[docs] @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: Optional[TFModelInputType] = None, bbox: Optional[Union[np.ndarray, tf.Tensor]] = None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (:obj:`tf.Tensor` or :obj:`np.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. Returns: Examples:: >>> from transformers import LayoutLMTokenizer, TFLayoutLMForTokenClassification >>> import torch >>> tokenizer = LayoutLMTokenizer.from_pretrained('microsoft/layoutlm-base-uncased') >>> model = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased') >>> words = ["Hello", "world"] >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] >>> token_boxes = [] >>> for word, box in zip(words, normalized_word_boxes): ... word_tokens = tokenizer.tokenize(word) ... token_boxes.extend([box] * len(word_tokens)) >>> # add bounding boxes of cls + sep tokens >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] >>> encoding = tokenizer(' '.join(words), return_tensors="tf") >>> input_ids = encoding["input_ids"] >>> attention_mask = encoding["attention_mask"] >>> token_type_ids = encoding["token_type_ids"] >>> bbox = tf.convert_to_tensor([token_boxes]) >>> token_labels = tf.convert_to_tensor([1,1,0,0]) >>> outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, ... labels=token_labels) >>> loss = outputs.loss >>> logits = outputs.logits """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.layoutlm( input_ids=inputs["input_ids"], bbox=inputs["bbox"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] sequence_output = self.dropout(inputs=sequence_output, training=inputs["training"]) logits = self.classifier(inputs=sequence_output) loss = None if inputs["labels"] is None else self.compute_loss(labels=inputs["labels"], logits=logits) if not inputs["return_dict"]: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
[docs] def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFTokenClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)