# coding=utf-8
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RAG Retriever model implementation."""
import os
import pickle
import time
from typing import Iterable, List, Optional, Tuple
import numpy as np
from ...file_utils import (
cached_path,
is_datasets_available,
is_faiss_available,
is_remote_url,
requires_datasets,
requires_faiss,
)
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
from .tokenization_rag import RagTokenizer
if is_datasets_available():
from datasets import Dataset, load_dataset, load_from_disk
if is_faiss_available():
import faiss
logger = logging.get_logger(__name__)
LEGACY_INDEX_PATH = "https://storage.googleapis.com/huggingface-nlp/datasets/wiki_dpr/"
class Index:
"""
A base class for the Indices encapsulated by the :class:`~transformers.RagRetriever`.
"""
def get_doc_dicts(self, doc_ids: np.ndarray) -> List[dict]:
"""
Returns a list of dictionaries, containing titles and text of the retrieved documents.
Args:
doc_ids (:obj:`np.ndarray` of shape :obj:`(batch_size, n_docs)`):
A tensor of document indices.
"""
raise NotImplementedError
def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]:
"""
For each query in the batch, retrieves ``n_docs`` documents.
Args:
question_hidden_states (:obj:`np.ndarray` of shape :obj:`(batch_size, vector_size):
An array of query vectors.
n_docs (:obj:`int`):
The number of docs retrieved per query.
Returns:
:obj:`np.ndarray` of shape :obj:`(batch_size, n_docs)`: A tensor of indices of retrieved documents.
:obj:`np.ndarray` of shape :obj:`(batch_size, vector_size)`: A tensor of vector representations of
retrieved documents.
"""
raise NotImplementedError
def is_initialized(self):
"""
Returns :obj:`True` if index is already initialized.
"""
raise NotImplementedError
def init_index(self):
"""
A function responsible for loading the index into memory. Should be called only once per training run of a RAG
model. E.g. if the model is trained on multiple GPUs in a distributed setup, only one of the workers will load
the index.
"""
raise NotImplementedError
class LegacyIndex(Index):
"""
An index which can be deserialized from the files built using https://github.com/facebookresearch/DPR. We use
default faiss index parameters as specified in that repository.
Args:
vector_size (:obj:`int`):
The dimension of indexed vectors.
index_path (:obj:`str`):
A path to a `directory` containing index files compatible with
:class:`~transformers.models.rag.retrieval_rag.LegacyIndex`
"""
INDEX_FILENAME = "hf_bert_base.hnswSQ8_correct_phi_128.c_index"
PASSAGE_FILENAME = "psgs_w100.tsv.pkl"
def __init__(self, vector_size, index_path):
self.index_id_to_db_id = []
self.index_path = index_path
self.passages = self._load_passages()
self.vector_size = vector_size
self.index = None
self._index_initialized = False
def _resolve_path(self, index_path, filename):
assert os.path.isdir(index_path) or is_remote_url(index_path), "Please specify a valid ``index_path``."
archive_file = os.path.join(index_path, filename)
try:
# Load from URL or cache if already cached
resolved_archive_file = cached_path(archive_file)
except EnvironmentError:
msg = (
f"Can't load '{archive_file}'. Make sure that:\n\n"
f"- '{index_path}' is a correct remote path to a directory containing a file named {filename}"
f"- or '{index_path}' is the correct path to a directory containing a file named {filename}.\n\n"
)
raise EnvironmentError(msg)
if resolved_archive_file == archive_file:
logger.info("loading file {}".format(archive_file))
else:
logger.info("loading file {} from cache at {}".format(archive_file, resolved_archive_file))
return resolved_archive_file
def _load_passages(self):
logger.info("Loading passages from {}".format(self.index_path))
passages_path = self._resolve_path(self.index_path, self.PASSAGE_FILENAME)
with open(passages_path, "rb") as passages_file:
passages = pickle.load(passages_file)
return passages
def _deserialize_index(self):
logger.info("Loading index from {}".format(self.index_path))
resolved_index_path = self._resolve_path(self.index_path, self.INDEX_FILENAME + ".index.dpr")
self.index = faiss.read_index(resolved_index_path)
resolved_meta_path = self._resolve_path(self.index_path, self.INDEX_FILENAME + ".index_meta.dpr")
with open(resolved_meta_path, "rb") as metadata_file:
self.index_id_to_db_id = pickle.load(metadata_file)
assert (
len(self.index_id_to_db_id) == self.index.ntotal
), "Deserialized index_id_to_db_id should match faiss index size"
def is_initialized(self):
return self._index_initialized
def init_index(self):
index = faiss.IndexHNSWFlat(self.vector_size + 1, 512)
index.hnsw.efSearch = 128
index.hnsw.efConstruction = 200
self.index = index
self._deserialize_index()
self._index_initialized = True
def get_doc_dicts(self, doc_ids: np.array):
doc_list = []
for doc_ids_i in doc_ids:
ids = [str(int(doc_id)) for doc_id in doc_ids_i]
docs = [self.passages[doc_id] for doc_id in ids]
doc_list.append(docs)
doc_dicts = []
for docs in doc_list:
doc_dict = {}
doc_dict["title"] = [doc[1] for doc in docs]
doc_dict["text"] = [doc[0] for doc in docs]
doc_dicts.append(doc_dict)
return doc_dicts
def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]:
aux_dim = np.zeros(len(question_hidden_states), dtype="float32").reshape(-1, 1)
query_nhsw_vectors = np.hstack((question_hidden_states, aux_dim))
_, docs_ids = self.index.search(query_nhsw_vectors, n_docs)
vectors = [[self.index.reconstruct(int(doc_id))[:-1] for doc_id in doc_ids] for doc_ids in docs_ids]
ids = [[int(self.index_id_to_db_id[doc_id]) for doc_id in doc_ids] for doc_ids in docs_ids]
return np.array(ids), np.array(vectors)
class HFIndexBase(Index):
def __init__(self, vector_size, dataset, index_initialized=False):
self.vector_size = vector_size
self.dataset = dataset
self._index_initialized = index_initialized
self._check_dataset_format(with_index=index_initialized)
dataset.set_format("numpy", columns=["embeddings"], output_all_columns=True, dtype="float32")
def _check_dataset_format(self, with_index: bool):
if not isinstance(self.dataset, Dataset):
raise ValueError("Dataset should be a datasets.Dataset object, but got {}".format(type(self.dataset)))
if len({"title", "text", "embeddings"} - set(self.dataset.column_names)) > 0:
raise ValueError(
"Dataset should be a dataset with the following columns: "
"title (str), text (str) and embeddings (arrays of dimension vector_size), "
"but got columns {}".format(self.dataset.column_names)
)
if with_index and "embeddings" not in self.dataset.list_indexes():
raise ValueError(
"Missing faiss index in the dataset. Make sure you called `dataset.add_faiss_index` to compute it "
"or `dataset.load_faiss_index` to load one from the disk."
)
def init_index(self):
raise NotImplementedError()
def is_initialized(self):
return self._index_initialized
def get_doc_dicts(self, doc_ids: np.ndarray) -> List[dict]:
return [self.dataset[doc_ids[i].tolist()] for i in range(doc_ids.shape[0])]
def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]:
_, ids = self.dataset.search_batch("embeddings", question_hidden_states, n_docs)
docs = [self.dataset[[i for i in indices if i >= 0]] for indices in ids]
vectors = [doc["embeddings"] for doc in docs]
for i in range(len(vectors)):
if len(vectors[i]) < n_docs:
vectors[i] = np.vstack([vectors[i], np.zeros((n_docs - len(vectors[i]), self.vector_size))])
return np.array(ids), np.array(vectors) # shapes (batch_size, n_docs) and (batch_size, n_docs, d)
class CanonicalHFIndex(HFIndexBase):
"""
A wrapper around an instance of :class:`~datasets.Datasets`. If ``index_path`` is set to ``None``, we load the
pre-computed index available with the :class:`~datasets.arrow_dataset.Dataset`, otherwise, we load the index from
the indicated path on disk.
Args:
vector_size (:obj:`int`): the dimension of the passages embeddings used by the index
dataset_name (:obj:`str`, optional, defaults to ``wiki_dpr``):
A datatset identifier of the indexed dataset on HuggingFace AWS bucket (list all available datasets and ids
with ``datasets.list_datasets()``).
dataset_split (:obj:`str`, optional, defaults to ``train``)
Which split of the ``dataset`` to load.
index_name (:obj:`str`, optional, defaults to ``train``)
The index_name of the index associated with the ``dataset``. The index loaded from ``index_path`` will be
saved under this name.
index_path (:obj:`str`, optional, defaults to ``None``)
The path to the serialized faiss index on disk.
use_dummy_dataset (:obj:`bool`, optional, defaults to ``False``): If True, use the dummy configuration of the dataset for tests.
"""
def __init__(
self,
vector_size: int,
dataset_name: str = "wiki_dpr",
dataset_split: str = "train",
index_name: Optional[str] = None,
index_path: Optional[str] = None,
use_dummy_dataset=False,
):
if int(index_path is None) + int(index_name is None) != 1:
raise ValueError("Please provide `index_name` or `index_path`.")
self.dataset_name = dataset_name
self.dataset_split = dataset_split
self.index_name = index_name
self.index_path = index_path
self.use_dummy_dataset = use_dummy_dataset
logger.info("Loading passages from {}".format(self.dataset_name))
dataset = load_dataset(
self.dataset_name, with_index=False, split=self.dataset_split, dummy=self.use_dummy_dataset
)
super().__init__(vector_size, dataset, index_initialized=False)
def init_index(self):
if self.index_path is not None:
logger.info("Loading index from {}".format(self.index_path))
self.dataset.load_faiss_index("embeddings", file=self.index_path)
else:
logger.info("Loading index from {}".format(self.dataset_name + " with index name " + self.index_name))
self.dataset = load_dataset(
self.dataset_name,
with_embeddings=True,
with_index=True,
split=self.dataset_split,
index_name=self.index_name,
dummy=self.use_dummy_dataset,
)
self.dataset.set_format("numpy", columns=["embeddings"], output_all_columns=True)
self._index_initialized = True
class CustomHFIndex(HFIndexBase):
"""
A wrapper around an instance of :class:`~datasets.Datasets`. The dataset and the index are both loaded from the
indicated paths on disk.
Args:
vector_size (:obj:`int`): the dimension of the passages embeddings used by the index
dataset_path (:obj:`str`):
The path to the serialized dataset on disk. The dataset should have 3 columns: title (str), text (str) and
embeddings (arrays of dimension vector_size)
index_path (:obj:`str`)
The path to the serialized faiss index on disk.
"""
def __init__(self, vector_size: int, dataset, index_path=None):
super().__init__(vector_size, dataset, index_initialized=index_path is None)
self.index_path = index_path
@classmethod
def load_from_disk(cls, vector_size, dataset_path, index_path):
logger.info("Loading passages from {}".format(dataset_path))
if dataset_path is None or index_path is None:
raise ValueError(
"Please provide ``dataset_path`` and ``index_path`` after calling ``dataset.save_to_disk(dataset_path)`` "
"and ``dataset.get_index('embeddings').save(index_path)``."
)
dataset = load_from_disk(dataset_path)
return cls(vector_size=vector_size, dataset=dataset, index_path=index_path)
def init_index(self):
if not self.is_initialized():
logger.info("Loading index from {}".format(self.index_path))
self.dataset.load_faiss_index("embeddings", file=self.index_path)
self._index_initialized = True
[docs]class RagRetriever:
"""
Retriever used to get documents from vector queries. It retrieves the documents embeddings as well as the documents
contents, and it formats them to be used with a RagModel.
Args:
config (:class:`~transformers.RagConfig`):
The configuration of the RAG model this Retriever is used with. Contains parameters indicating which
``Index`` to build. You can load your own custom dataset with ``config.index_name="custom"`` or use a
canonical one (default) from the datasets library with ``config.index_name="wiki_dpr"`` for example.
question_encoder_tokenizer (:class:`~transformers.PreTrainedTokenizer`):
The tokenizer that was used to tokenize the question. It is used to decode the question and then use the
generator_tokenizer.
generator_tokenizer (:class:`~transformers.PreTrainedTokenizer`):
The tokenizer used for the generator part of the RagModel.
index (:class:`~transformers.models.rag.retrieval_rag.Index`, optional, defaults to the one defined by the configuration):
If specified, use this index instead of the one built using the configuration
Examples::
>>> # To load the default "wiki_dpr" dataset with 21M passages from wikipedia (index name is 'compressed' or 'exact')
>>> from transformers import RagRetriever
>>> retriever = RagRetriever.from_pretrained('facebook/dpr-ctx_encoder-single-nq-base', dataset="wiki_dpr", index_name='compressed')
>>> # To load your own indexed dataset built with the datasets library. More info on how to build the indexed dataset in examples/rag/use_own_knowledge_dataset.py
>>> from transformers import RagRetriever
>>> dataset = ... # dataset must be a datasets.Datasets object with columns "title", "text" and "embeddings", and it must have a faiss index
>>> retriever = RagRetriever.from_pretrained('facebook/dpr-ctx_encoder-single-nq-base', indexed_dataset=dataset)
>>> # To load your own indexed dataset built with the datasets library that was saved on disk. More info in examples/rag/use_own_knowledge_dataset.py
>>> from transformers import RagRetriever
>>> dataset_path = "path/to/my/dataset" # dataset saved via `dataset.save_to_disk(...)`
>>> index_path = "path/to/my/index.faiss" # faiss index saved via `dataset.get_index("embeddings").save(...)`
>>> retriever = RagRetriever.from_pretrained('facebook/dpr-ctx_encoder-single-nq-base', index_name='custom', passages_path=dataset_path, index_path=index_path)
>>> # To load the legacy index built originally for Rag's paper
>>> from transformers import RagRetriever
>>> retriever = RagRetriever.from_pretrained('facebook/dpr-ctx_encoder-single-nq-base', index_name='legacy')
"""
def __init__(self, config, question_encoder_tokenizer, generator_tokenizer, index=None, init_retrieval=True):
self._init_retrieval = init_retrieval
requires_datasets(self)
requires_faiss(self)
super().__init__()
self.index = index or self._build_index(config)
self.generator_tokenizer = generator_tokenizer
self.question_encoder_tokenizer = question_encoder_tokenizer
self.n_docs = config.n_docs
self.batch_size = config.retrieval_batch_size
self.config = config
if self._init_retrieval:
self.init_retrieval()
@staticmethod
def _build_index(config):
if config.index_name == "legacy":
return LegacyIndex(
config.retrieval_vector_size,
config.index_path or LEGACY_INDEX_PATH,
)
elif config.index_name == "custom":
return CustomHFIndex.load_from_disk(
vector_size=config.retrieval_vector_size,
dataset_path=config.passages_path,
index_path=config.index_path,
)
else:
return CanonicalHFIndex(
vector_size=config.retrieval_vector_size,
dataset_name=config.dataset,
dataset_split=config.dataset_split,
index_name=config.index_name,
index_path=config.index_path,
use_dummy_dataset=config.use_dummy_dataset,
)
@classmethod
def from_pretrained(cls, retriever_name_or_path, indexed_dataset=None, **kwargs):
requires_datasets(cls)
requires_faiss(cls)
config = kwargs.pop("config", None) or RagConfig.from_pretrained(retriever_name_or_path, **kwargs)
rag_tokenizer = RagTokenizer.from_pretrained(retriever_name_or_path, config=config)
question_encoder_tokenizer = rag_tokenizer.question_encoder
generator_tokenizer = rag_tokenizer.generator
if indexed_dataset is not None:
config.index_name = "custom"
index = CustomHFIndex(config.retrieval_vector_size, indexed_dataset)
else:
index = cls._build_index(config)
return cls(
config,
question_encoder_tokenizer=question_encoder_tokenizer,
generator_tokenizer=generator_tokenizer,
index=index,
)
def save_pretrained(self, save_directory):
if isinstance(self.index, CustomHFIndex):
if self.config.index_path is None:
index_path = os.path.join(save_directory, "hf_dataset_index.faiss")
self.index.dataset.get_index("embeddings").save(index_path)
self.config.index_path = index_path
if self.config.passages_path is None:
passages_path = os.path.join(save_directory, "hf_dataset")
# datasets don't support save_to_disk with indexes right now
faiss_index = self.index.dataset._indexes.pop("embeddings")
self.index.dataset.save_to_disk(passages_path)
self.index.dataset._indexes["embeddings"] = faiss_index
self.config.passages_path = passages_path
self.config.save_pretrained(save_directory)
rag_tokenizer = RagTokenizer(
question_encoder=self.question_encoder_tokenizer,
generator=self.generator_tokenizer,
)
rag_tokenizer.save_pretrained(save_directory)
[docs] def init_retrieval(self):
"""
Retriever initalization function. It loads the index into memory.
"""
logger.info("initializing retrieval")
self.index.init_index()
[docs] def postprocess_docs(self, docs, input_strings, prefix, n_docs, return_tensors=None):
r"""
Postprocessing retrieved ``docs`` and combining them with ``input_strings``.
Args:
docs (:obj:`dict`):
Retrieved documents.
input_strings (:obj:`str`):
Input strings decoded by ``preprocess_query``.
prefix (:obj:`str`):
Prefix added at the beginning of each input, typically used with T5-based models.
Return:
:obj:`tuple(tensors)`: a tuple consisting of two elements: contextualized ``input_ids`` and a compatible
``attention_mask``.
"""
def cat_input_and_doc(doc_title, doc_text, input_string, prefix):
# TODO(Patrick): if we train more RAG models, I want to put the input first to take advantage of effortless truncation
# TODO(piktus): better handling of truncation
if doc_title.startswith('"'):
doc_title = doc_title[1:]
if doc_title.endswith('"'):
doc_title = doc_title[:-1]
if prefix is None:
prefix = ""
out = (prefix + doc_title + self.config.title_sep + doc_text + self.config.doc_sep + input_string).replace(
" ", " "
)
return out
rag_input_strings = [
cat_input_and_doc(
docs[i]["title"][j],
docs[i]["text"][j],
input_strings[i],
prefix,
)
for i in range(len(docs))
for j in range(n_docs)
]
contextualized_inputs = self.generator_tokenizer.batch_encode_plus(
rag_input_strings,
max_length=self.config.max_combined_length,
return_tensors=return_tensors,
padding="max_length",
truncation=True,
)
return contextualized_inputs["input_ids"], contextualized_inputs["attention_mask"]
def _chunk_tensor(self, t: Iterable, chunk_size: int) -> List[Iterable]:
return [t[i : i + chunk_size] for i in range(0, len(t), chunk_size)]
def _main_retrieve(self, question_hidden_states: np.ndarray, n_docs: int) -> Tuple[np.ndarray, np.ndarray]:
question_hidden_states_batched = self._chunk_tensor(question_hidden_states, self.batch_size)
ids_batched = []
vectors_batched = []
for question_hidden_states in question_hidden_states_batched:
start_time = time.time()
ids, vectors = self.index.get_top_docs(question_hidden_states, n_docs)
logger.debug(
"index search time: {} sec, batch size {}".format(
time.time() - start_time, question_hidden_states.shape
)
)
ids_batched.extend(ids)
vectors_batched.extend(vectors)
return (
np.array(ids_batched),
np.array(vectors_batched),
) # shapes (batch_size, n_docs) and (batch_size, n_docs, d)
[docs] def retrieve(self, question_hidden_states: np.ndarray, n_docs: int) -> Tuple[np.ndarray, List[dict]]:
"""
Retrieves documents for specified ``question_hidden_states``.
Args:
question_hidden_states (:obj:`np.ndarray` of shape :obj:`(batch_size, vector_size)`):
A batch of query vectors to retrieve with.
n_docs (:obj:`int`):
The number of docs retrieved per query.
Return:
:obj:`Tuple[np.ndarray, np.ndarray, List[dict]]`: A tuple with the following objects:
- **retrieved_doc_embeds** (:obj:`np.ndarray` of shape :obj:`(batch_size, n_docs, dim)`) -- The retrieval
embeddings of the retrieved docs per query.
- **doc_ids** (:obj:`np.ndarray` of shape :obj:`(batch_size, n_docs)`) -- The ids of the documents in the
index
- **doc_dicts** (:obj:`List[dict]`): The :obj:`retrieved_doc_embeds` examples per query.
"""
doc_ids, retrieved_doc_embeds = self._main_retrieve(question_hidden_states, n_docs)
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(doc_ids)
def __call__(
self,
question_input_ids: List[List[int]],
question_hidden_states: np.ndarray,
prefix=None,
n_docs=None,
return_tensors=None,
) -> BatchEncoding:
"""
Retrieves documents for specified :obj:`question_hidden_states`.
Args:
question_input_ids: (:obj:`List[List[int]]`) batch of input ids
question_hidden_states (:obj:`np.ndarray` of shape :obj:`(batch_size, vector_size)`:
A batch of query vectors to retrieve with.
prefix: (:obj:`str`, `optional`):
The prefix used by the generator's tokenizer.
n_docs (:obj:`int`, `optional`):
The number of docs retrieved per query.
return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`, defaults to "pt"):
If set, will return tensors instead of list of python integers. Acceptable values are:
* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
* :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects.
* :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects.
Returns: :class:`~transformers.BatchEncoding`: A :class:`~transformers.BatchEncoding` with the following
fields:
- **context_input_ids** -- List of token ids to be fed to a model.
`What are input IDs? <../glossary.html#input-ids>`__
- **context_attention_mask** -- List of indices specifying which tokens should be attended to by the model
(when :obj:`return_attention_mask=True` or if `"attention_mask"` is in :obj:`self.model_input_names`).
`What are attention masks? <../glossary.html#attention-mask>`__
- **retrieved_doc_embeds** -- List of embeddings of the retrieved documents
- **doc_ids** -- List of ids of the retrieved documents
"""
n_docs = n_docs if n_docs is not None else self.n_docs
prefix = prefix if prefix is not None else self.config.generator.prefix
retrieved_doc_embeds, doc_ids, docs = self.retrieve(question_hidden_states, n_docs)
input_strings = self.question_encoder_tokenizer.batch_decode(question_input_ids, skip_special_tokens=True)
context_input_ids, context_attention_mask = self.postprocess_docs(
docs, input_strings, prefix, n_docs, return_tensors=return_tensors
)
return BatchEncoding(
{
"context_input_ids": context_input_ids,
"context_attention_mask": context_attention_mask,
"retrieved_doc_embeds": retrieved_doc_embeds,
"doc_ids": doc_ids,
},
tensor_type=return_tensors,
)