Source code for transformers.models.distilbert.modeling_distilbert

# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
 PyTorch DistilBERT model adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM) and in
 part from HuggingFace PyTorch version of Google AI Bert model (https://github.com/google-research/bert)
"""


import copy
import math

import numpy as np
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss

from ...activations import gelu
from ...file_utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
)
from ...modeling_outputs import (
    BaseModelOutput,
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
from ...modeling_utils import (
    PreTrainedModel,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)
from ...utils import logging
from .configuration_distilbert import DistilBertConfig


logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "distilbert-base-uncased"
_CONFIG_FOR_DOC = "DistilBertConfig"
_TOKENIZER_FOR_DOC = "DistilBertTokenizer"

DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "distilbert-base-uncased",
    "distilbert-base-uncased-distilled-squad",
    "distilbert-base-cased",
    "distilbert-base-cased-distilled-squad",
    "distilbert-base-german-cased",
    "distilbert-base-multilingual-cased",
    "distilbert-base-uncased-finetuned-sst-2-english",
    # See all DistilBERT models at https://huggingface.co/models?filter=distilbert
]


# UTILS AND BUILDING BLOCKS OF THE ARCHITECTURE #


def create_sinusoidal_embeddings(n_pos, dim, out):
    position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
    out.requires_grad = False
    out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
    out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
    out.detach_()


class Embeddings(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.dim, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.dim)
        if config.sinusoidal_pos_embds:
            create_sinusoidal_embeddings(
                n_pos=config.max_position_embeddings, dim=config.dim, out=self.position_embeddings.weight
            )

        self.LayerNorm = nn.LayerNorm(config.dim, eps=1e-12)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, input_ids):
        """
        Parameters:
            input_ids: torch.tensor(bs, max_seq_length) The token ids to embed.

        Returns: torch.tensor(bs, max_seq_length, dim) The embedded tokens (plus position embeddings, no token_type
        embeddings)
        """
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)  # (max_seq_length)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)  # (bs, max_seq_length)

        word_embeddings = self.word_embeddings(input_ids)  # (bs, max_seq_length, dim)
        position_embeddings = self.position_embeddings(position_ids)  # (bs, max_seq_length, dim)

        embeddings = word_embeddings + position_embeddings  # (bs, max_seq_length, dim)
        embeddings = self.LayerNorm(embeddings)  # (bs, max_seq_length, dim)
        embeddings = self.dropout(embeddings)  # (bs, max_seq_length, dim)
        return embeddings


class MultiHeadSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.n_heads = config.n_heads
        self.dim = config.dim
        self.dropout = nn.Dropout(p=config.attention_dropout)

        assert self.dim % self.n_heads == 0

        self.q_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.k_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.v_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.out_lin = nn.Linear(in_features=config.dim, out_features=config.dim)

        self.pruned_heads = set()

    def prune_heads(self, heads):
        attention_head_size = self.dim // self.n_heads
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(heads, self.n_heads, attention_head_size, self.pruned_heads)
        # Prune linear layers
        self.q_lin = prune_linear_layer(self.q_lin, index)
        self.k_lin = prune_linear_layer(self.k_lin, index)
        self.v_lin = prune_linear_layer(self.v_lin, index)
        self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
        # Update hyper params
        self.n_heads = self.n_heads - len(heads)
        self.dim = attention_head_size * self.n_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(self, query, key, value, mask, head_mask=None, output_attentions=False):
        """
        Parameters:
            query: torch.tensor(bs, seq_length, dim)
            key: torch.tensor(bs, seq_length, dim)
            value: torch.tensor(bs, seq_length, dim)
            mask: torch.tensor(bs, seq_length)

        Returns:
            weights: torch.tensor(bs, n_heads, seq_length, seq_length) Attention weights context: torch.tensor(bs,
            seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True`
        """
        bs, q_length, dim = query.size()
        k_length = key.size(1)
        # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
        # assert key.size() == value.size()

        dim_per_head = self.dim // self.n_heads

        mask_reshp = (bs, 1, 1, k_length)

        def shape(x):
            """ separate heads """
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x):
            """ group heads """
            return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)

        q = shape(self.q_lin(query))  # (bs, n_heads, q_length, dim_per_head)
        k = shape(self.k_lin(key))  # (bs, n_heads, k_length, dim_per_head)
        v = shape(self.v_lin(value))  # (bs, n_heads, k_length, dim_per_head)

        q = q / math.sqrt(dim_per_head)  # (bs, n_heads, q_length, dim_per_head)
        scores = torch.matmul(q, k.transpose(2, 3))  # (bs, n_heads, q_length, k_length)
        mask = (mask == 0).view(mask_reshp).expand_as(scores)  # (bs, n_heads, q_length, k_length)
        scores.masked_fill_(mask, -float("inf"))  # (bs, n_heads, q_length, k_length)

        weights = nn.Softmax(dim=-1)(scores)  # (bs, n_heads, q_length, k_length)
        weights = self.dropout(weights)  # (bs, n_heads, q_length, k_length)

        # Mask heads if we want to
        if head_mask is not None:
            weights = weights * head_mask

        context = torch.matmul(weights, v)  # (bs, n_heads, q_length, dim_per_head)
        context = unshape(context)  # (bs, q_length, dim)
        context = self.out_lin(context)  # (bs, q_length, dim)

        if output_attentions:
            return (context, weights)
        else:
            return (context,)


class FFN(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dropout = nn.Dropout(p=config.dropout)
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.lin1 = nn.Linear(in_features=config.dim, out_features=config.hidden_dim)
        self.lin2 = nn.Linear(in_features=config.hidden_dim, out_features=config.dim)
        assert config.activation in ["relu", "gelu"], "activation ({}) must be in ['relu', 'gelu']".format(
            config.activation
        )
        self.activation = gelu if config.activation == "gelu" else nn.ReLU()

    def forward(self, input):
        return apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, input)

    def ff_chunk(self, input):
        x = self.lin1(input)
        x = self.activation(x)
        x = self.lin2(x)
        x = self.dropout(x)
        return x


class TransformerBlock(nn.Module):
    def __init__(self, config):
        super().__init__()

        assert config.dim % config.n_heads == 0

        self.attention = MultiHeadSelfAttention(config)
        self.sa_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)

        self.ffn = FFN(config)
        self.output_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)

    def forward(self, x, attn_mask=None, head_mask=None, output_attentions=False):
        """
        Parameters:
            x: torch.tensor(bs, seq_length, dim)
            attn_mask: torch.tensor(bs, seq_length)

        Returns:
            sa_weights: torch.tensor(bs, n_heads, seq_length, seq_length) The attention weights ffn_output:
            torch.tensor(bs, seq_length, dim) The output of the transformer block contextualization.
        """
        # Self-Attention
        sa_output = self.attention(
            query=x,
            key=x,
            value=x,
            mask=attn_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
        )
        if output_attentions:
            sa_output, sa_weights = sa_output  # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length)
        else:  # To handle these `output_attentions` or `output_hidden_states` cases returning tuples
            assert type(sa_output) == tuple
            sa_output = sa_output[0]
        sa_output = self.sa_layer_norm(sa_output + x)  # (bs, seq_length, dim)

        # Feed Forward Network
        ffn_output = self.ffn(sa_output)  # (bs, seq_length, dim)
        ffn_output = self.output_layer_norm(ffn_output + sa_output)  # (bs, seq_length, dim)

        output = (ffn_output,)
        if output_attentions:
            output = (sa_weights,) + output
        return output


class Transformer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.n_layers = config.n_layers

        layer = TransformerBlock(config)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.n_layers)])

    def forward(
        self, x, attn_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=None
    ):  # docstyle-ignore
        """
        Parameters:
            x: torch.tensor(bs, seq_length, dim) Input sequence embedded.
            attn_mask: torch.tensor(bs, seq_length) Attention mask on the sequence.

        Returns:
            hidden_state: torch.tensor(bs, seq_length, dim) Sequence of hidden states in the last (top)
            layer all_hidden_states: Tuple[torch.tensor(bs, seq_length, dim)]
                Tuple of length n_layers with the hidden states from each layer.
                Optional: only if output_hidden_states=True
            all_attentions: Tuple[torch.tensor(bs, n_heads, seq_length, seq_length)]
                Tuple of length n_layers with the attention weights from each layer
                Optional: only if output_attentions=True
        """
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        hidden_state = x
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_state,)

            layer_outputs = layer_module(
                x=hidden_state, attn_mask=attn_mask, head_mask=head_mask[i], output_attentions=output_attentions
            )
            hidden_state = layer_outputs[-1]

            if output_attentions:
                assert len(layer_outputs) == 2
                attentions = layer_outputs[0]
                all_attentions = all_attentions + (attentions,)
            else:
                assert len(layer_outputs) == 1

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_state,)

        if not return_dict:
            return tuple(v for v in [hidden_state, all_hidden_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_state, hidden_states=all_hidden_states, attentions=all_attentions
        )


# INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL #
class DistilBertPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = DistilBertConfig
    load_tf_weights = None
    base_model_prefix = "distilbert"

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


DISTILBERT_START_DOCSTRING = r"""

    This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
    methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
    pruning heads etc.)

    This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
    subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
    general usage and behavior.

    Parameters:
        config (:class:`~transformers.DistilBertConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.
"""

DISTILBERT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`~transformers.DistilBertTokenizer`. See
            :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
            details.

            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            `What are attention masks? <../glossary.html#attention-mask>`__
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
            vectors than the model's internal embedding lookup matrix.
        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""


[docs]@add_start_docstrings( "The bare DistilBERT encoder/transformer outputting raw hidden-states without any specific head on top.", DISTILBERT_START_DOCSTRING, ) class DistilBertModel(DistilBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.embeddings = Embeddings(config) # Embeddings self.transformer = Transformer(config) # Encoder self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, new_embeddings): self.embeddings.word_embeddings = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.transformer.layer[layer].attention.prune_heads(heads)
[docs] @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) # (bs, seq_length) # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids) # (bs, seq_length, dim) return self.transformer( x=inputs_embeds, attn_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, )
[docs]@add_start_docstrings( """DistilBert Model with a `masked language modeling` head on top. """, DISTILBERT_START_DOCSTRING, ) class DistilBertForMaskedLM(DistilBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.distilbert = DistilBertModel(config) self.vocab_transform = nn.Linear(config.dim, config.dim) self.vocab_layer_norm = nn.LayerNorm(config.dim, eps=1e-12) self.vocab_projector = nn.Linear(config.dim, config.vocab_size) self.init_weights() self.mlm_loss_fct = nn.CrossEntropyLoss() def get_output_embeddings(self): return self.vocab_projector def set_output_embeddings(self, new_embeddings): self.vocab_projector = new_embeddings
[docs] @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict dlbrt_output = self.distilbert( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = dlbrt_output[0] # (bs, seq_length, dim) prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim) prediction_logits = gelu(prediction_logits) # (bs, seq_length, dim) prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim) prediction_logits = self.vocab_projector(prediction_logits) # (bs, seq_length, vocab_size) mlm_loss = None if labels is not None: mlm_loss = self.mlm_loss_fct(prediction_logits.view(-1, prediction_logits.size(-1)), labels.view(-1)) if not return_dict: output = (prediction_logits,) + dlbrt_output[1:] return ((mlm_loss,) + output) if mlm_loss is not None else output return MaskedLMOutput( loss=mlm_loss, logits=prediction_logits, hidden_states=dlbrt_output.hidden_states, attentions=dlbrt_output.attentions, )
[docs]@add_start_docstrings( """ DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, DISTILBERT_START_DOCSTRING, ) class DistilBertForSequenceClassification(DistilBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.distilbert = DistilBertModel(config) self.pre_classifier = nn.Linear(config.dim, config.dim) self.classifier = nn.Linear(config.dim, config.num_labels) self.dropout = nn.Dropout(config.seq_classif_dropout) self.init_weights()
[docs] @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict distilbert_output = self.distilbert( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_state = distilbert_output[0] # (bs, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs, dim) pooled_output = self.pre_classifier(pooled_output) # (bs, dim) pooled_output = nn.ReLU()(pooled_output) # (bs, dim) pooled_output = self.dropout(pooled_output) # (bs, dim) logits = self.classifier(pooled_output) # (bs, num_labels) loss = None if labels is not None: if self.num_labels == 1: loss_fct = nn.MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + distilbert_output[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, )
[docs]@add_start_docstrings( """ DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, DISTILBERT_START_DOCSTRING, ) class DistilBertForQuestionAnswering(DistilBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.distilbert = DistilBertModel(config) self.qa_outputs = nn.Linear(config.dim, config.num_labels) assert config.num_labels == 2 self.dropout = nn.Dropout(config.qa_dropout) self.init_weights()
[docs] @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict distilbert_output = self.distilbert( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = distilbert_output[0] # (bs, max_query_len, dim) hidden_states = self.dropout(hidden_states) # (bs, max_query_len, dim) logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) # (bs, max_query_len) end_logits = end_logits.squeeze(-1) # (bs, max_query_len) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + distilbert_output[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, )
[docs]@add_start_docstrings( """ DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, DISTILBERT_START_DOCSTRING, ) class DistilBertForTokenClassification(DistilBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.distilbert = DistilBertModel(config) self.dropout = nn.Dropout(config.dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights()
[docs] @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.distilbert( input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
[docs]@add_start_docstrings( """ DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, DISTILBERT_START_DOCSTRING, ) class DistilBertForMultipleChoice(DistilBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.distilbert = DistilBertModel(config) self.pre_classifier = nn.Linear(config.dim, config.dim) self.classifier = nn.Linear(config.dim, 1) self.dropout = nn.Dropout(config.seq_classif_dropout) self.init_weights()
[docs] @add_start_docstrings_to_model_forward( DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @replace_return_docstrings(output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) Returns: Examples:: >>> from transformers import DistilBertTokenizer, DistilBertForMultipleChoice >>> import torch >>> tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased') >>> model = DistilBertForMultipleChoice.from_pretrained('distilbert-base-cased') >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 >>> encoding = tokenizer([[prompt, choice0], [prompt, choice1]], return_tensors='pt', padding=True) >>> outputs = model(**{k: v.unsqueeze(0) for k,v in encoding.items()}, labels=labels) # batch size is 1 >>> # the linear classifier still needs to be trained >>> loss = outputs.loss >>> logits = outputs.logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.distilbert( input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_state = outputs[0] # (bs * num_choices, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs * num_choices, dim) pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim) pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim) pooled_output = self.dropout(pooled_output) # (bs * num_choices, dim) logits = self.classifier(pooled_output) # (bs * num_choices, 1) reshaped_logits = logits.view(-1, num_choices) # (bs, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )