Encoder Decoder Models¶
The EncoderDecoderModel can be used to initialize a sequence-to-sequence model with any
pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder.
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
After such an EncoderDecoderModel has been trained/fine-tuned, it can be saved/loaded just like
any other models (see the examples for more information).
An application of this architecture could be to leverage two pretrained BertModel as the encoder
and decoder for a summarization model as was shown in: Text Summarization with Pretrained Encoders by Yang Liu and Mirella Lapata.
EncoderDecoderConfig¶
-
class
transformers.EncoderDecoderConfig(**kwargs)[source]¶ EncoderDecoderConfigis the configuration class to store the configuration of aEncoderDecoderModel. It is used to instantiate an Encoder Decoder model according to the specified arguments, defining the encoder and decoder configs.Configuration objects inherit from
PretrainedConfigand can be used to control the model outputs. Read the documentation fromPretrainedConfigfor more information.- Parameters
kwargs (optional) –
Dictionary of keyword arguments. Notably:
encoder (
PretrainedConfig, optional) – An instance of a configuration object that defines the encoder config.decoder (
PretrainedConfig, optional) – An instance of a configuration object that defines the decoder config.
Examples:
>>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel >>> # Initializing a BERT bert-base-uncased style configuration >>> config_encoder = BertConfig() >>> config_decoder = BertConfig() >>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) >>> # Initializing a Bert2Bert model from the bert-base-uncased style configurations >>> model = EncoderDecoderModel(config=config) >>> # Accessing the model configuration >>> config_encoder = model.config.encoder >>> config_decoder = model.config.decoder >>> # set decoder config to causal lm >>> config_decoder.is_decoder = True >>> config_decoder.add_cross_attention = True >>> # Saving the model, including its configuration >>> model.save_pretrained('my-model') >>> # loading model and config from pretrained folder >>> encoder_decoder_config = EncoderDecoderConfig.from_pretrained('my-model') >>> model = EncoderDecoderModel.from_pretrained('my-model', config=encoder_decoder_config)
-
classmethod
from_encoder_decoder_configs(encoder_config: transformers.configuration_utils.PretrainedConfig, decoder_config: transformers.configuration_utils.PretrainedConfig, **kwargs) → transformers.configuration_utils.PretrainedConfig[source]¶ Instantiate a
EncoderDecoderConfig(or a derived class) from a pre-trained encoder model configuration and decoder model configuration.- Returns
An instance of a configuration object
- Return type
EncoderDecoderModel¶
-
class
transformers.EncoderDecoderModel(config: Optional[transformers.configuration_utils.PretrainedConfig] = None, encoder: Optional[transformers.modeling_utils.PreTrainedModel] = None, decoder: Optional[transformers.modeling_utils.PreTrainedModel] = None)[source]¶ This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via
from_pretrained()function and the decoder is loaded viafrom_pretrained()function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like summarization.The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.
After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information).
This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
T5Config) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
EncoderDecoderis a generic model class that will be instantiated as a transformer architecture with one of the base model classes of the library as encoder and another one as decoder when created with the :meth`~transformers.AutoModel.from_pretrained` class method for the encoder and :meth`~transformers.AutoModelForCausalLM.from_pretrained` class method for the decoder.-
forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)[source]¶ The
EncoderDecoderModelforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
PreTrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) –Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using
PreTrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.If
past_key_valuesis used, optionally only the lastdecoder_input_idshave to be input (seepast_key_values).Provide for sequence to sequence training to the decoder. Indices can be obtained using
PretrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.decoder_attention_mask (
torch.BoolTensorof shape(batch_size, target_sequence_length), optional) – Default behavior: generate a tensor that ignores pad tokens indecoder_input_ids. Causal mask will also be used by default.encoder_outputs (
tuple(torch.FloatTensor), optional) – This tuple must consist of (last_hidden_state, optional:hidden_states, optional:attentions)last_hidden_state(torch.FloatTensorof shape(batch_size, sequence_length, hidden_size)) is a tensor of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.past_key_values (
tuple(tuple(torch.FloatTensor))of lengthconfig.n_layerswith each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)) –Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If
past_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix.decoder_inputs_embeds (
torch.FloatTensorof shape(batch_size, target_sequence_length, hidden_size), optional) – Optionally, instead of passingdecoder_input_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertdecoder_input_idsindices into associated vectors than the model’s internal embedding lookup matrix.labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss for the decoder. Indices should be in[-100, 0, ..., config.vocab_size](seeinput_idsdocstring) Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]use_cache (
bool, optional) – If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).output_attentions (
bool, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) – Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) – If set toTrue, the model will return aSeq2SeqLMOutputinstead of a plain tuple.kwargs –
(optional) Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
Without a prefix which will be input as
**encoder_kwargsfor the encoder forward function.With a decoder_ prefix which will be input as
**decoder_kwargsfor the decoder forward function.
- Returns
A
Seq2SeqLMOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (EncoderDecoderConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) – Language modeling loss.logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – Tuple oftuple(torch.FloatTensor)of lengthconfig.n_layers, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head).Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples:
>>> from transformers import EncoderDecoderModel, BertTokenizer >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained('bert-base-uncased', 'bert-base-uncased') # initialize Bert2Bert from pre-trained checkpoints >>> # forward >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids) >>> # training >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids, labels=input_ids) >>> loss, logits = outputs.loss, outputs.logits >>> # save and load from pretrained >>> model.save_pretrained("bert2bert") >>> model = EncoderDecoderModel.from_pretrained("bert2bert") >>> # generation >>> generated = model.generate(input_ids, decoder_start_token_id=model.config.decoder.pad_token_id)
- Return type
Seq2SeqLMOutputortuple(torch.FloatTensor)
-
classmethod
from_encoder_decoder_pretrained(encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs) → transformers.modeling_utils.PreTrainedModel[source]¶ Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints.
The model is set in evaluation mode by default using
model.eval()(Dropout modules are deactivated). To train the model, you need to first set it back in training mode withmodel.train().- Params:
- encoder_pretrained_model_name_or_path (:obj: str, optional):
Information necessary to initiate the encoder. Can be either:
A string, the model id of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like
bert-base-uncased, or namespaced under a user or organization name, likedbmdz/bert-base-german-cased.A path to a directory containing model weights saved using
save_pretrained(), e.g.,./my_model_directory/.A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- decoder_pretrained_model_name_or_path (:obj: str, optional, defaults to None):
Information necessary to initiate the decoder. Can be either:
A string, the model id of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like
bert-base-uncased, or namespaced under a user or organization name, likedbmdz/bert-base-german-cased.A path to a directory containing model weights saved using
save_pretrained(), e.g.,./my_model_directory/.A path or url to a tensorflow index checkpoint file (e.g,
./tf_model/model.ckpt.index). In this case,from_tfshould be set toTrueand a configuration object should be provided asconfigargument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- model_args (remaining positional arguments, optional):
All remaning positional arguments will be passed to the underlying model’s
__init__method.- kwargs (remaining dictionary of keyword arguments, optional):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
output_attentions=True).To update the encoder configuration, use the prefix encoder_ for each configuration parameter.
To update the decoder configuration, use the prefix decoder_ for each configuration parameter.
To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a
configis provided or automatically loaded.
Example:
>>> from transformers import EncoderDecoderModel >>> # initialize a bert2bert from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained('bert-base-uncased', 'bert-base-uncased') >>> # saving model after fine-tuning >>> model.save_pretrained("./bert2bert") >>> # load fine-tuned model >>> model = EncoderDecoderModel.from_pretrained("./bert2bert")