MobileBERTΒΆ
OverviewΒΆ
The MobileBERT model was proposed in MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Itβs a bidirectional transformer based on the BERT model, which is compressed and accelerated using several approaches.
The abstract from the paper is the following:
Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained models with hundreds of millions of parameters. However, these models suffer from heavy model sizes and high latency such that they cannot be deployed to resource-limited mobile devices. In this paper, we propose MobileBERT for compressing and accelerating the popular BERT model. Like the original BERT, MobileBERT is task-agnostic, that is, it can be generically applied to various downstream NLP tasks via simple fine-tuning. Basically, MobileBERT is a thin version of BERT_LARGE, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks. To train MobileBERT, we first train a specially designed teacher model, an inverted-bottleneck incorporated BERT_LARGE model. Then, we conduct knowledge transfer from this teacher to MobileBERT. Empirical studies show that MobileBERT is 4.3x smaller and 5.5x faster than BERT_BASE while achieving competitive results on well-known benchmarks. On the natural language inference tasks of GLUE, MobileBERT achieves a GLUEscore o 77.7 (0.6 lower than BERT_BASE), and 62 ms latency on a Pixel 4 phone. On the SQuAD v1.1/v2.0 question answering task, MobileBERT achieves a dev F1 score of 90.0/79.2 (1.5/2.1 higher than BERT_BASE).
Tips:
MobileBERT is a model with absolute position embeddings so itβs usually advised to pad the inputs on the right rather than the left.
MobileBERT is similar to BERT and therefore relies on the masked language modeling (MLM) objective. It is therefore efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation. Models trained with a causal language modeling (CLM) objective are better in that regard.
The original code can be found here.
MobileBertConfigΒΆ
-
class
transformers.MobileBertConfig(vocab_size=30522, hidden_size=512, num_hidden_layers=24, num_attention_heads=4, intermediate_size=512, hidden_act='relu', hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, embedding_size=128, trigram_input=True, use_bottleneck=True, intra_bottleneck_size=128, use_bottleneck_attention=False, key_query_shared_bottleneck=True, num_feedforward_networks=4, normalization_type='no_norm', classifier_activation=True, **kwargs)[source]ΒΆ This is the configuration class to store the configuration of a
MobileBertModelor aTFMobileBertModel. It is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture.Configuration objects inherit from
PretrainedConfigand can be used to control the model outputs. Read the documentation fromPretrainedConfigfor more information.- Parameters
vocab_size (
int, optional, defaults to 30522) β Vocabulary size of the MobileBERT model. Defines the number of different tokens that can be represented by theinputs_idspassed when callingMobileBertModelorTFMobileBertModel.hidden_size (
int, optional, defaults to 512) β Dimensionality of the encoder layers and the pooler layer.num_hidden_layers (
int, optional, defaults to 24) β Number of hidden layers in the Transformer encoder.num_attention_heads (
int, optional, defaults to 4) β Number of attention heads for each attention layer in the Transformer encoder.intermediate_size (
int, optional, defaults to 512) β Dimensionality of the βintermediateβ (often named feed-forward) layer in the Transformer encoder.hidden_act (
strorfunction, optional, defaults to"relu") β The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu","relu","silu"and"gelu_new"are supported.hidden_dropout_prob (
float, optional, defaults to 0.0) β The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.attention_probs_dropout_prob (
float, optional, defaults to 0.1) β The dropout ratio for the attention probabilities.max_position_embeddings (
int, optional, defaults to 512) β The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).type_vocab_size (
int, optional, defaults to 2) β The vocabulary size of thetoken_type_idspassed when callingMobileBertModelorTFMobileBertModel.initializer_range (
float, optional, defaults to 0.02) β The standard deviation of the truncated_normal_initializer for initializing all weight matrices.layer_norm_eps (
float, optional, defaults to 1e-12) β The epsilon used by the layer normalization layers.pad_token_id (
int, optional, defaults to 0) β The ID of the token in the word embedding to use as padding.embedding_size (
int, optional, defaults to 128) β The dimension of the word embedding vectors.trigram_input (
bool, optional, defaults toTrue) β Use a convolution of trigram as input.use_bottleneck (
bool, optional, defaults toTrue) β Whether to use bottleneck in BERT.intra_bottleneck_size (
int, optional, defaults to 128) β Size of bottleneck layer output.use_bottleneck_attention (
bool, optional, defaults toFalse) β Whether to use attention inputs from the bottleneck transformation.key_query_shared_bottleneck (
bool, optional, defaults toTrue) β Whether to use the same linear transformation for query&key in the bottleneck.num_feedforward_networks (
int, optional, defaults to 4) β Number of FFNs in a block.normalization_type (
str, optional, defaults to"no_norm") β The normalization type in MobileBERT.
Examples:
>>> from transformers import MobileBertModel, MobileBertConfig >>> # Initializing a MobileBERT configuration >>> configuration = MobileBertConfig() >>> # Initializing a model from the configuration above >>> model = MobileBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config
Attributes: pretrained_config_archive_map (Dict[str, str]): A dictionary containing all the available pre-trained checkpoints.
MobileBertTokenizerΒΆ
-
class
transformers.MobileBertTokenizer(vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token='[UNK]', sep_token='[SEP]', pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', tokenize_chinese_chars=True, strip_accents=None, **kwargs)[source]ΒΆ Construct a MobileBERT tokenizer.
BertTokenizerand runs end-to-end tokenization: punctuation splitting and wordpiece.Refer to superclass
BertTokenizerfor usage examples and documentation concerning parameters.
MobileBertTokenizerFastΒΆ
-
class
transformers.MobileBertTokenizerFast(vocab_file, tokenizer_file=None, do_lower_case=True, unk_token='[UNK]', sep_token='[SEP]', pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', tokenize_chinese_chars=True, strip_accents=None, **kwargs)[source]ΒΆ Construct a βfastβ MobileBERT tokenizer (backed by HuggingFaceβs tokenizers library).
MobileBertTokenizerFastis identical toBertTokenizerFastand runs end-to-end tokenization: punctuation splitting and wordpiece.Refer to superclass
BertTokenizerFastfor usage examples and documentation concerning parameters.-
slow_tokenizer_classΒΆ alias of
transformers.models.mobilebert.tokenization_mobilebert.MobileBertTokenizer
-
MobileBert specific outputsΒΆ
-
class
transformers.models.mobilebert.modeling_mobilebert.MobileBertForPreTrainingOutput(loss: Optional[torch.FloatTensor] = None, prediction_logits: torch.FloatTensor = None, seq_relationship_logits: torch.FloatTensor = None, hidden_states: Optional[Tuple[torch.FloatTensor]] = None, attentions: Optional[Tuple[torch.FloatTensor]] = None)[source]ΒΆ Output type of
MobileBertForPreTraining.- Parameters
loss (optional, returned when
labelsis provided,torch.FloatTensorof shape(1,)) β Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.prediction_logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).seq_relationship_logits (
torch.FloatTensorof shape(batch_size, 2)) β Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) βTuple of
torch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) βTuple of
torch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
class
transformers.models.mobilebert.modeling_tf_mobilebert.TFMobileBertForPreTrainingOutput(loss: Optional[tensorflow.python.framework.ops.Tensor] = None, prediction_logits: tensorflow.python.framework.ops.Tensor = None, seq_relationship_logits: tensorflow.python.framework.ops.Tensor = None, hidden_states: Optional[Tuple[tensorflow.python.framework.ops.Tensor]] = None, attentions: Optional[Tuple[tensorflow.python.framework.ops.Tensor]] = None)[source]ΒΆ Output type of
TFMobileBertForPreTraining.- Parameters
prediction_logits (
tf.Tensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).seq_relationship_logits (
tf.Tensorof shape(batch_size, 2)) β Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) βTuple of
tf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) βTuple of
tf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
MobileBertModelΒΆ
-
class
transformers.MobileBertModel(config, add_pooling_layer=True)[source]ΒΆ The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MobileBertConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
https://arxiv.org/pdf/2004.02984.pdf
-
forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_hidden_states=None, output_attentions=None, return_dict=None)[source]ΒΆ The
MobileBertModelforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1].head_mask (
torch.FloatTensorof shape(num_heads,)or(num_layers, num_heads), optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.
- Returns
A
BaseModelOutputWithPooling(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (MobileBertConfig) and inputs.last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size)) β Sequence of hidden-states at the output of the last layer of the model.pooler_output (
torch.FloatTensorof shape(batch_size, hidden_size)) β Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
BaseModelOutputWithPoolingortuple(torch.FloatTensor)
Example:
>>> from transformers import MobileBertTokenizer, MobileBertModel >>> import torch >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = MobileBertModel.from_pretrained('google/mobilebert-uncased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state
MobileBertForPreTrainingΒΆ
-
class
transformers.MobileBertForPreTraining(config)[source]ΒΆ MobileBert Model with two heads on top as done during the pretraining: a masked language modeling head and a next sentence prediction (classification) head.
This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MobileBertConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, next_sentence_label=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ The
MobileBertForPreTrainingforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1].head_mask (
torch.FloatTensorof shape(num_heads,)or(num_layers, num_heads), optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) β Labels for computing the masked language modeling loss. Indices should be in[-100, 0, ..., config.vocab_size](seeinput_idsdocstring) Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]next_sentence_label (
torch.LongTensorof shape(batch_size,), optional) βLabels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see
input_idsdocstring) Indices should be in[0, 1]:0 indicates sequence B is a continuation of sequence A,
1 indicates sequence B is a random sequence.
- Returns
A
MobileBertForPreTrainingOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (MobileBertConfig) and inputs.loss (optional, returned when
labelsis provided,torch.FloatTensorof shape(1,)) β Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.prediction_logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).seq_relationship_logits (
torch.FloatTensorof shape(batch_size, 2)) β Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples:
>>> from transformers import MobileBertTokenizer, MobileBertForPreTraining >>> import torch >>> tokenizer = MobileBertTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = MobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids) >>> prediction_logits = outptus.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits
- Return type
MobileBertForPreTrainingOutputortuple(torch.FloatTensor)
MobileBertForMaskedLMΒΆ
-
class
transformers.MobileBertForMaskedLM(config)[source]ΒΆ MobileBert Model with a language modeling head on top.
This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MobileBertConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ The
MobileBertForMaskedLMforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1].head_mask (
torch.FloatTensorof shape(num_heads,)or(num_layers, num_heads), optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) β Labels for computing the masked language modeling loss. Indices should be in[-100, 0, ..., config.vocab_size](seeinput_idsdocstring) Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]
- Returns
A
MaskedLMOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (MobileBertConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) β Masked language modeling (MLM) loss.logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
MaskedLMOutputortuple(torch.FloatTensor)
Example:
>>> from transformers import MobileBertTokenizer, MobileBertForMaskedLM >>> import torch >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = MobileBertForMaskedLM.from_pretrained('google/mobilebert-uncased') >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt") >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits
MobileBertForNextSentencePredictionΒΆ
-
class
transformers.MobileBertForNextSentencePrediction(config)[source]ΒΆ MobileBert Model with a next sentence prediction (classification) head on top.
This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MobileBertConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)[source]ΒΆ The
MobileBertForNextSentencePredictionforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1].head_mask (
torch.FloatTensorof shape(num_heads,)or(num_layers, num_heads), optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.labels (
torch.LongTensorof shape(batch_size,), optional) βLabels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see
input_idsdocstring) Indices should be in[0, 1].0 indicates sequence B is a continuation of sequence A,
1 indicates sequence B is a random sequence.
- Returns
A
NextSentencePredictorOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (MobileBertConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whennext_sentence_labelis provided) β Next sequence prediction (classification) loss.logits (
torch.FloatTensorof shape(batch_size, 2)) β Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples:
>>> from transformers import MobileBertTokenizer, MobileBertForNextSentencePrediction >>> import torch >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = MobileBertForNextSentencePrediction.from_pretrained('google/mobilebert-uncased') >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt') >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> loss = outputs.loss >>> logits = outputs.logits
- Return type
NextSentencePredictorOutputortuple(torch.FloatTensor)
MobileBertForSequenceClassificationΒΆ
-
class
transformers.MobileBertForSequenceClassification(config)[source]ΒΆ MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MobileBertConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ The
MobileBertForSequenceClassificationforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1].head_mask (
torch.FloatTensorof shape(num_heads,)or(num_layers, num_heads), optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.labels (
torch.LongTensorof shape(batch_size,), optional) β Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]. Ifconfig.num_labels == 1a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1a classification loss is computed (Cross-Entropy).
- Returns
A
SequenceClassifierOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (MobileBertConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) β Classification (or regression if config.num_labels==1) loss.logits (
torch.FloatTensorof shape(batch_size, config.num_labels)) β Classification (or regression if config.num_labels==1) scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
SequenceClassifierOutputortuple(torch.FloatTensor)
Example:
>>> from transformers import MobileBertTokenizer, MobileBertForSequenceClassification >>> import torch >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = MobileBertForSequenceClassification.from_pretrained('google/mobilebert-uncased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits
MobileBertForMultipleChoiceΒΆ
-
class
transformers.MobileBertForMultipleChoice(config)[source]ΒΆ MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MobileBertConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ The
MobileBertForMultipleChoiceforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, num_choices, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.FloatTensorof shape(batch_size, num_choices, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensorof shape(batch_size, num_choices, sequence_length), optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensorof shape(batch_size, num_choices, sequence_length), optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1].head_mask (
torch.FloatTensorof shape(num_heads,)or(num_layers, num_heads), optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensorof shape(batch_size, num_choices, sequence_length, hidden_size), optional) β Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.labels (
torch.LongTensorof shape(batch_size,), optional) β Labels for computing the multiple choice classification loss. Indices should be in[0, ..., num_choices-1]wherenum_choicesis the size of the second dimension of the input tensors. (Seeinput_idsabove)
- Returns
A
MultipleChoiceModelOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (MobileBertConfig) and inputs.loss (
torch.FloatTensorof shape (1,), optional, returned whenlabelsis provided) β Classification loss.logits (
torch.FloatTensorof shape(batch_size, num_choices)) β num_choices is the second dimension of the input tensors. (see input_ids above).Classification scores (before SoftMax).
hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
MultipleChoiceModelOutputortuple(torch.FloatTensor)
Example:
>>> from transformers import MobileBertTokenizer, MobileBertForMultipleChoice >>> import torch >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = MobileBertForMultipleChoice.from_pretrained('google/mobilebert-uncased') >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True) >>> outputs = model(**{k: v.unsqueeze(0) for k,v in encoding.items()}, labels=labels) # batch size is 1 >>> # the linear classifier still needs to be trained >>> loss = outputs.loss >>> logits = outputs.logits
MobileBertForTokenClassificationΒΆ
-
class
transformers.MobileBertForTokenClassification(config)[source]ΒΆ MoibleBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MobileBertConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ The
MobileBertForTokenClassificationforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1].head_mask (
torch.FloatTensorof shape(num_heads,)or(num_layers, num_heads), optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) β Labels for computing the token classification loss. Indices should be in[0, ..., config.num_labels - 1].
- Returns
A
TokenClassifierOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (MobileBertConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) β Classification loss.logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.num_labels)) β Classification scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TokenClassifierOutputortuple(torch.FloatTensor)
Example:
>>> from transformers import MobileBertTokenizer, MobileBertForTokenClassification >>> import torch >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = MobileBertForTokenClassification.from_pretrained('google/mobilebert-uncased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> labels = torch.tensor([1] * inputs["input_ids"].size(1)).unsqueeze(0) # Batch size 1 >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits
MobileBertForQuestionAnsweringΒΆ
-
class
transformers.MobileBertForQuestionAnswering(config)[source]ΒΆ MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).
This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MobileBertConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ The
MobileBertForQuestionAnsweringforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1].head_mask (
torch.FloatTensorof shape(num_heads,)or(num_layers, num_heads), optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.start_positions (
torch.LongTensorof shape(batch_size,), optional) β Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.end_positions (
torch.LongTensorof shape(batch_size,), optional) β Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
- Returns
A
QuestionAnsweringModelOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (MobileBertConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) β Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.start_logits (
torch.FloatTensorof shape(batch_size, sequence_length)) β Span-start scores (before SoftMax).end_logits (
torch.FloatTensorof shape(batch_size, sequence_length)) β Span-end scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
QuestionAnsweringModelOutputortuple(torch.FloatTensor)
Example:
>>> from transformers import MobileBertTokenizer, MobileBertForQuestionAnswering >>> import torch >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = MobileBertForQuestionAnswering.from_pretrained('google/mobilebert-uncased') >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> inputs = tokenizer(question, text, return_tensors='pt') >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) >>> loss = outputs.loss >>> start_scores = outputs.start_logits >>> end_scores = outputs.end_logits
TFMobileBertModelΒΆ
-
class
transformers.TFMobileBertModel(*args, **kwargs)[source]ΒΆ The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from
TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()method which currently requires having all the tensors in the first argument of the model call function:model(inputs).If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_idsonly and nothing else:model(inputs_ids)a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids])a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
MobileBertConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
call(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs)[source]ΒΆ The
TFMobileBertModelforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
MobileBertTokenizer. Seetransformers.PreTrainedTokenizer.__call__()andtransformers.PreTrainedTokenizer.encode()for details.attention_mask (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1].head_mask (
Numpy arrayortf.Tensorof shape(num_heads,)or(num_layers, num_heads), optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) β Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.training (
bool, optional, defaults toFalse) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
- Returns
A
TFBaseModelOutputWithPooling(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftf.Tensorcomprising various elements depending on the configuration (MobileBertConfig) and inputs.last_hidden_state (
tf.Tensorof shape(batch_size, sequence_length, hidden_size)) β Sequence of hidden-states at the output of the last layer of the model.pooler_output (
tf.Tensorof shape(batch_size, hidden_size)) β Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.This output is usually not a good summary of the semantic content of the input, youβre often better with averaging or pooling the sequence of hidden-states for the whole input sequence.
hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFBaseModelOutputWithPoolingortuple(tf.Tensor)
Example:
>>> from transformers import MobileBertTokenizer, TFMobileBertModel >>> import tensorflow as tf >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertModel.from_pretrained('google/mobilebert-uncased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> outputs = model(inputs) >>> last_hidden_states = outputs.last_hidden_state
TFMobileBertForPreTrainingΒΆ
-
class
transformers.TFMobileBertForPreTraining(*args, **kwargs)[source]ΒΆ MobileBert Model with two heads on top as done during the pretraining: a masked language modeling head and a next sentence prediction (classification) head.
This model inherits from
TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()method which currently requires having all the tensors in the first argument of the model call function:model(inputs).If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_idsonly and nothing else:model(inputs_ids)a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids])a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
MobileBertConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
call(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs)[source]ΒΆ The
TFMobileBertForPreTrainingforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
MobileBertTokenizer. Seetransformers.PreTrainedTokenizer.__call__()andtransformers.PreTrainedTokenizer.encode()for details.attention_mask (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1].head_mask (
Numpy arrayortf.Tensorof shape(num_heads,)or(num_layers, num_heads), optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) β Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.training (
bool, optional, defaults toFalse) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
- Returns
A
TFMobileBertForPreTrainingOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftf.Tensorcomprising various elements depending on the configuration (MobileBertConfig) and inputs.prediction_logits (
tf.Tensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).seq_relationship_logits (
tf.Tensorof shape(batch_size, 2)) β Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples:
>>> import tensorflow as tf >>> from transformers import MobileBertTokenizer, TFMobileBertForPreTraining >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased') >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 >>> outputs = model(input_ids) >>> prediction_scores, seq_relationship_scores = outputs[:2]
- Return type
TFMobileBertForPreTrainingOutputortuple(tf.Tensor)
TFMobileBertForMaskedLMΒΆ
-
class
transformers.TFMobileBertForMaskedLM(*args, **kwargs)[source]ΒΆ MobileBert Model with a language modeling head on top.
This model inherits from
TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()method which currently requires having all the tensors in the first argument of the model call function:model(inputs).If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_idsonly and nothing else:model(inputs_ids)a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids])a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
MobileBertConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
call(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs)[source]ΒΆ The
TFMobileBertForMaskedLMforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
MobileBertTokenizer. Seetransformers.PreTrainedTokenizer.__call__()andtransformers.PreTrainedTokenizer.encode()for details.attention_mask (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1].head_mask (
Numpy arrayortf.Tensorof shape(num_heads,)or(num_layers, num_heads), optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) β Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.training (
bool, optional, defaults toFalse) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).labels (
tf.Tensorof shape(batch_size, sequence_length), optional) β Labels for computing the masked language modeling loss. Indices should be in[-100, 0, ..., config.vocab_size](seeinput_idsdocstring) Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels
- Returns
A
TFMaskedLMOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftf.Tensorcomprising various elements depending on the configuration (MobileBertConfig) and inputs.loss (
tf.Tensorof shape(1,), optional, returned whenlabelsis provided) β Masked language modeling (MLM) loss.logits (
tf.Tensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFMaskedLMOutputortuple(tf.Tensor)
Example:
>>> from transformers import MobileBertTokenizer, TFMobileBertForMaskedLM >>> import tensorflow as tf >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertForMaskedLM.from_pretrained('google/mobilebert-uncased') >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf") >>> inputs["labels"] = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"] >>> outputs = model(inputs) >>> loss = outputs.loss >>> logits = outputs.logits
TFMobileBertForNextSentencePredictionΒΆ
-
class
transformers.TFMobileBertForNextSentencePrediction(*args, **kwargs)[source]ΒΆ MobileBert Model with a next sentence prediction (classification) head on top.
This model inherits from
TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()method which currently requires having all the tensors in the first argument of the model call function:model(inputs).If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_idsonly and nothing else:model(inputs_ids)a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids])a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
MobileBertConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
call(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, next_sentence_label=None, training=False, **kwargs)[source]ΒΆ The
TFMobileBertForNextSentencePredictionforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
MobileBertTokenizer. Seetransformers.PreTrainedTokenizer.__call__()andtransformers.PreTrainedTokenizer.encode()for details.attention_mask (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1].head_mask (
Numpy arrayortf.Tensorof shape(num_heads,)or(num_layers, num_heads), optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) β Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.training (
bool, optional, defaults toFalse) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
- Returns
A
TFNextSentencePredictorOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftf.Tensorcomprising various elements depending on the configuration (MobileBertConfig) and inputs.loss (
tf.Tensorof shape(1,), optional, returned whennext_sentence_labelis provided) β Next sentence prediction loss.logits (
tf.Tensorof shape(batch_size, 2)) β Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples:
>>> import tensorflow as tf >>> from transformers import MobileBertTokenizer, TFMobileBertForNextSentencePrediction >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertForNextSentencePrediction.from_pretrained('google/mobilebert-uncased') >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors='tf') >>> logits = model(encoding['input_ids'], token_type_ids=encoding['token_type_ids'])[0]
- Return type
TFNextSentencePredictorOutputortuple(tf.Tensor)
TFMobileBertForSequenceClassificationΒΆ
-
class
transformers.TFMobileBertForSequenceClassification(*args, **kwargs)[source]ΒΆ MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from
TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()method which currently requires having all the tensors in the first argument of the model call function:model(inputs).If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_idsonly and nothing else:model(inputs_ids)a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids])a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
MobileBertConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
call(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs)[source]ΒΆ The
TFMobileBertForSequenceClassificationforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
MobileBertTokenizer. Seetransformers.PreTrainedTokenizer.__call__()andtransformers.PreTrainedTokenizer.encode()for details.attention_mask (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1].head_mask (
Numpy arrayortf.Tensorof shape(num_heads,)or(num_layers, num_heads), optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) β Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.training (
bool, optional, defaults toFalse) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).labels (
tf.Tensorof shape(batch_size,), optional) β Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]. Ifconfig.num_labels == 1a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1a classification loss is computed (Cross-Entropy).
- Returns
A
TFSequenceClassifierOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftf.Tensorcomprising various elements depending on the configuration (MobileBertConfig) and inputs.loss (
tf.Tensorof shape(1,), optional, returned whenlabelsis provided) β Classification (or regression if config.num_labels==1) loss.logits (
tf.Tensorof shape(batch_size, config.num_labels)) β Classification (or regression if config.num_labels==1) scores (before SoftMax).hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFSequenceClassifierOutputortuple(tf.Tensor)
Example:
>>> from transformers import MobileBertTokenizer, TFMobileBertForSequenceClassification >>> import tensorflow as tf >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertForSequenceClassification.from_pretrained('google/mobilebert-uncased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> inputs["labels"] = tf.reshape(tf.constant(1), (-1, 1)) # Batch size 1 >>> outputs = model(inputs) >>> loss = outputs.loss >>> logits = outputs.logits
TFMobileBertForMultipleChoiceΒΆ
-
class
transformers.TFMobileBertForMultipleChoice(*args, **kwargs)[source]ΒΆ MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
This model inherits from
TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()method which currently requires having all the tensors in the first argument of the model call function:model(inputs).If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_idsonly and nothing else:model(inputs_ids)a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids])a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
MobileBertConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
call(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs)[source]ΒΆ The
TFMobileBertForMultipleChoiceforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
Numpy arrayortf.Tensorof shape(batch_size, num_choices, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
MobileBertTokenizer. Seetransformers.PreTrainedTokenizer.__call__()andtransformers.PreTrainedTokenizer.encode()for details.attention_mask (
Numpy arrayortf.Tensorof shape(batch_size, num_choices, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
Numpy arrayortf.Tensorof shape(batch_size, num_choices, sequence_length), optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
Numpy arrayortf.Tensorof shape(batch_size, num_choices, sequence_length), optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1].head_mask (
Numpy arrayortf.Tensorof shape(num_heads,)or(num_layers, num_heads), optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
tf.Tensorof shape(batch_size, num_choices, sequence_length, hidden_size), optional) β Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.training (
bool, optional, defaults toFalse) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).labels (
tf.Tensorof shape(batch_size,), optional) β Labels for computing the multiple choice classification loss. Indices should be in[0, ..., num_choices]wherenum_choicesis the size of the second dimension of the input tensors. (Seeinput_idsabove)
- Returns
A
TFMultipleChoiceModelOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftf.Tensorcomprising various elements depending on the configuration (MobileBertConfig) and inputs.loss (
tf.Tensorof shape (1,), optional, returned whenlabelsis provided) β Classification loss.logits (
tf.Tensorof shape(batch_size, num_choices)) β num_choices is the second dimension of the input tensors. (see input_ids above).Classification scores (before SoftMax).
hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFMultipleChoiceModelOutputortuple(tf.Tensor)
Example:
>>> from transformers import MobileBertTokenizer, TFMobileBertForMultipleChoice >>> import tensorflow as tf >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertForMultipleChoice.from_pretrained('google/mobilebert-uncased') >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='tf', padding=True) >>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()} >>> outputs = model(inputs) # batch size is 1 >>> # the linear classifier still needs to be trained >>> logits = outputs.logits
TFMobileBertForTokenClassificationΒΆ
-
class
transformers.TFMobileBertForTokenClassification(*args, **kwargs)[source]ΒΆ MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
This model inherits from
TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()method which currently requires having all the tensors in the first argument of the model call function:model(inputs).If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_idsonly and nothing else:model(inputs_ids)a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids])a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
MobileBertConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
call(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs)[source]ΒΆ The
TFMobileBertForTokenClassificationforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
MobileBertTokenizer. Seetransformers.PreTrainedTokenizer.__call__()andtransformers.PreTrainedTokenizer.encode()for details.attention_mask (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1].head_mask (
Numpy arrayortf.Tensorof shape(num_heads,)or(num_layers, num_heads), optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) β Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.training (
bool, optional, defaults toFalse) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).labels (
tf.Tensorof shape(batch_size, sequence_length), optional) β Labels for computing the token classification loss. Indices should be in[0, ..., config.num_labels - 1].
- Returns
A
TFTokenClassifierOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftf.Tensorcomprising various elements depending on the configuration (MobileBertConfig) and inputs.loss (
tf.Tensorof shape(1,), optional, returned whenlabelsis provided) β Classification loss.logits (
tf.Tensorof shape(batch_size, sequence_length, config.num_labels)) β Classification scores (before SoftMax).hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFTokenClassifierOutputortuple(tf.Tensor)
Example:
>>> from transformers import MobileBertTokenizer, TFMobileBertForTokenClassification >>> import tensorflow as tf >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertForTokenClassification.from_pretrained('google/mobilebert-uncased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> input_ids = inputs["input_ids"] >>> inputs["labels"] = tf.reshape(tf.constant([1] * tf.size(input_ids).numpy()), (-1, tf.size(input_ids))) # Batch size 1 >>> outputs = model(inputs) >>> loss = outputs.loss >>> logits = outputs.logits
TFMobileBertForQuestionAnsweringΒΆ
-
class
transformers.TFMobileBertForQuestionAnswering(*args, **kwargs)[source]ΒΆ MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).
This model inherits from
TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()method which currently requires having all the tensors in the first argument of the model call function:model(inputs).If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_idsonly and nothing else:model(inputs_ids)a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids])a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
MobileBertConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
call(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, start_positions=None, end_positions=None, training=False, **kwargs)[source]ΒΆ The
TFMobileBertForQuestionAnsweringforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
MobileBertTokenizer. Seetransformers.PreTrainedTokenizer.__call__()andtransformers.PreTrainedTokenizer.encode()for details.attention_mask (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βSegment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
Numpy arrayortf.Tensorof shape(batch_size, sequence_length), optional) βIndices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1].head_mask (
Numpy arrayortf.Tensorof shape(num_heads,)or(num_layers, num_heads), optional) βMask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) β Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the modelβs internal embedding lookup matrix.output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.training (
bool, optional, defaults toFalse) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).start_positions (
tf.Tensorof shape(batch_size,), optional) β Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.end_positions (
tf.Tensorof shape(batch_size,), optional) β Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
- Returns
A
TFQuestionAnsweringModelOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftf.Tensorcomprising various elements depending on the configuration (MobileBertConfig) and inputs.loss (
tf.Tensorof shape(1,), optional, returned whenlabelsis provided) β Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.start_logits (
tf.Tensorof shape(batch_size, sequence_length)) β Span-start scores (before SoftMax).end_logits (
tf.Tensorof shape(batch_size, sequence_length)) β Span-end scores (before SoftMax).hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFQuestionAnsweringModelOutputortuple(tf.Tensor)
Example:
>>> from transformers import MobileBertTokenizer, TFMobileBertForQuestionAnswering >>> import tensorflow as tf >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertForQuestionAnswering.from_pretrained('google/mobilebert-uncased') >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> input_dict = tokenizer(question, text, return_tensors='tf') >>> outputs = model(input_dict) >>> start_logits = outputs.start_logits >>> end_logits = outputs.end_logits >>> all_tokens = tokenizer.convert_ids_to_tokens(input_dict["input_ids"].numpy()[0]) >>> answer = ' '.join(all_tokens[tf.math.argmax(start_logits, 1)[0] : tf.math.argmax(end_logits, 1)[0]+1])