Source code for transformers.trainer_utils

# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities for the Trainer and TFTrainer class. Should be independent from PyTorch and TensorFlow.
"""

import copy
import functools
import gc
import inspect
import os
import random
import re
import threading
import time
from typing import Any, Dict, NamedTuple, Optional, Tuple, Union

import numpy as np

from .file_utils import (
    ExplicitEnum,
    is_psutil_available,
    is_sagemaker_dp_enabled,
    is_tf_available,
    is_torch_available,
    is_torch_cuda_available,
    is_torch_tpu_available,
)


if is_torch_available():
    import torch

if is_tf_available():
    import tensorflow as tf


[docs]def set_seed(seed: int): """ Helper function for reproducible behavior to set the seed in ``random``, ``numpy``, ``torch`` and/or ``tf`` (if installed). Args: seed (:obj:`int`): The seed to set. """ random.seed(seed) np.random.seed(seed) if is_torch_available(): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # ^^ safe to call this function even if cuda is not available if is_tf_available(): tf.random.set_seed(seed)
[docs]class EvalPrediction(NamedTuple): """ Evaluation output (always contains labels), to be used to compute metrics. Parameters: predictions (:obj:`np.ndarray`): Predictions of the model. label_ids (:obj:`np.ndarray`): Targets to be matched. """ predictions: Union[np.ndarray, Tuple[np.ndarray]] label_ids: np.ndarray
class EvalLoopOutput(NamedTuple): predictions: Union[np.ndarray, Tuple[np.ndarray]] label_ids: Optional[np.ndarray] metrics: Optional[Dict[str, float]] num_samples: Optional[int] class PredictionOutput(NamedTuple): predictions: Union[np.ndarray, Tuple[np.ndarray]] label_ids: Optional[np.ndarray] metrics: Optional[Dict[str, float]] class TrainOutput(NamedTuple): global_step: int training_loss: float metrics: Dict[str, float] PREFIX_CHECKPOINT_DIR = "checkpoint" _re_checkpoint = re.compile(r"^" + PREFIX_CHECKPOINT_DIR + r"\-(\d+)$") def get_last_checkpoint(folder): content = os.listdir(folder) checkpoints = [ path for path in content if _re_checkpoint.search(path) is not None and os.path.isdir(os.path.join(folder, path)) ] if len(checkpoints) == 0: return return os.path.join(folder, max(checkpoints, key=lambda x: int(_re_checkpoint.search(x).groups()[0])))
[docs]class IntervalStrategy(ExplicitEnum): NO = "no" STEPS = "steps" EPOCH = "epoch"
class EvaluationStrategy(ExplicitEnum): NO = "no" STEPS = "steps" EPOCH = "epoch" class HubStrategy(ExplicitEnum): END = "end" EVERY_SAVE = "every_save" CHECKPOINT = "checkpoint" ALL_CHECKPOINTS = "all_checkpoints" class BestRun(NamedTuple): """ The best run found by an hyperparameter search (see :class:`~transformers.Trainer.hyperparameter_search`). Parameters: run_id (:obj:`str`): The id of the best run (if models were saved, the corresponding checkpoint will be in the folder ending with run-{run_id}). objective (:obj:`float`): The objective that was obtained for this run. hyperparameters (:obj:`Dict[str, Any]`): The hyperparameters picked to get this run. """ run_id: str objective: float hyperparameters: Dict[str, Any] def default_compute_objective(metrics: Dict[str, float]) -> float: """ The default objective to maximize/minimize when doing an hyperparameter search. It is the evaluation loss if no metrics are provided to the :class:`~transformers.Trainer`, the sum of all metrics otherwise. Args: metrics (:obj:`Dict[str, float]`): The metrics returned by the evaluate method. Return: :obj:`float`: The objective to minimize or maximize """ metrics = copy.deepcopy(metrics) loss = metrics.pop("eval_loss", None) _ = metrics.pop("epoch", None) # Remove speed metrics speed_metrics = [m for m in metrics.keys() if m.endswith("_runtime") or m.endswith("_per_second")] for sm in speed_metrics: _ = metrics.pop(sm, None) return loss if len(metrics) == 0 else sum(metrics.values()) def default_hp_space_optuna(trial) -> Dict[str, float]: from .integrations import is_optuna_available assert is_optuna_available(), "This function needs Optuna installed: `pip install optuna`" return { "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True), "num_train_epochs": trial.suggest_int("num_train_epochs", 1, 5), "seed": trial.suggest_int("seed", 1, 40), "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [4, 8, 16, 32, 64]), } def default_hp_space_ray(trial) -> Dict[str, float]: from .integrations import is_ray_tune_available assert is_ray_tune_available(), "This function needs ray installed: `pip " "install ray[tune]`" from ray import tune return { "learning_rate": tune.loguniform(1e-6, 1e-4), "num_train_epochs": tune.choice(list(range(1, 6))), "seed": tune.uniform(1, 40), "per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]), } def default_hp_space_sigopt(trial): return [ {"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double", "transformamtion": "log"}, {"bounds": {"min": 1, "max": 6}, "name": "num_train_epochs", "type": "int"}, {"bounds": {"min": 1, "max": 40}, "name": "seed", "type": "int"}, { "categorical_values": ["4", "8", "16", "32", "64"], "name": "per_device_train_batch_size", "type": "categorical", }, ] class HPSearchBackend(ExplicitEnum): OPTUNA = "optuna" RAY = "ray" SIGOPT = "sigopt" default_hp_space = { HPSearchBackend.OPTUNA: default_hp_space_optuna, HPSearchBackend.RAY: default_hp_space_ray, HPSearchBackend.SIGOPT: default_hp_space_sigopt, } def is_main_process(local_rank): """ Whether or not the current process is the local process, based on `xm.get_ordinal()` (for TPUs) first, then on `local_rank`. """ if is_torch_tpu_available(): import torch_xla.core.xla_model as xm return xm.get_ordinal() == 0 return local_rank in [-1, 0] def total_processes_number(local_rank): """ Return the number of processes launched in parallel. Works with `torch.distributed` and TPUs. """ if is_torch_tpu_available(): import torch_xla.core.xla_model as xm return xm.xrt_world_size() elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.distributed as dist return dist.get_world_size() elif local_rank != -1 and is_torch_available(): import torch return torch.distributed.get_world_size() return 1 def speed_metrics(split, start_time, num_samples=None, num_steps=None): """ Measure and return speed performance metrics. This function requires a time snapshot `start_time` before the operation to be measured starts and this function should be run immediately after the operation to be measured has completed. Args: - split: name to prefix metric (like train, eval, test...) - start_time: operation start time - num_samples: number of samples processed """ runtime = time.time() - start_time result = {f"{split}_runtime": round(runtime, 4)} if num_samples is not None: samples_per_second = num_samples / runtime result[f"{split}_samples_per_second"] = round(samples_per_second, 3) if num_steps is not None: steps_per_second = num_steps / runtime result[f"{split}_steps_per_second"] = round(steps_per_second, 3) return result
[docs]class SchedulerType(ExplicitEnum): LINEAR = "linear" COSINE = "cosine" COSINE_WITH_RESTARTS = "cosine_with_restarts" POLYNOMIAL = "polynomial" CONSTANT = "constant" CONSTANT_WITH_WARMUP = "constant_with_warmup"
class TrainerMemoryTracker: """ A helper class that tracks cpu and gpu memory. This class will silently skip unless ``psutil`` is available. Install with ``pip install psutil``. When a stage completes, it can pass metrics dict to update with the memory metrics gathered during this stage. Example :: self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics) self._memory_tracker.start() code ... metrics = {"train_runtime": 10.5} self._memory_tracker.stop_and_update_metrics(metrics) At the moment GPU tracking is only for ``pytorch``, but can be extended to support ``tensorflow``. To understand this class' intricacies please read the documentation of :meth:`~transformers.Trainer.log_metrics`. """ # map trainer methods to metrics prefix stages = { "__init__": "init", "train": "train", "evaluate": "eval", "predict": "test", } def __init__(self, skip_memory_metrics=False): self.skip_memory_metrics = skip_memory_metrics if not is_psutil_available(): # soft dependency on psutil self.skip_memory_metrics = True if self.skip_memory_metrics: return import psutil # noqa if is_torch_cuda_available(): import torch self.torch = torch self.gpu = {} else: self.torch = None self.process = psutil.Process() self.cur_stage = None self.cpu = {} self.init_reported = False def derive_stage(self): """derives the stage/caller name automatically""" caller = inspect.currentframe().f_back.f_back.f_code.co_name if caller in self.stages: return self.stages[caller] else: raise ValueError( f"was called from {caller}, but only expect to be called from one of {self.stages.keys()}" ) def cpu_mem_used(self): """get resident set size memory for the current process""" return self.process.memory_info().rss def peak_monitor_func(self): self.cpu_mem_used_peak = -1 while True: self.cpu_mem_used_peak = max(self.cpu_mem_used(), self.cpu_mem_used_peak) # can't sleep or will not catch the peak right (this comment is here on purpose) # time.sleep(0.001) # 1msec if not self.peak_monitoring: break def start(self): """start tracking for the caller's stage""" if self.skip_memory_metrics: return stage = self.derive_stage() # deal with nested calls of eval during train - simply ignore those if self.cur_stage is not None and self.cur_stage != stage: return self.cur_stage = stage gc.collect() if self.torch is not None: self.torch.cuda.reset_peak_memory_stats() self.torch.cuda.empty_cache() # gpu if self.torch is not None: self.gpu_mem_used_at_start = self.torch.cuda.memory_allocated() # cpu self.cpu_mem_used_at_start = self.cpu_mem_used() self.peak_monitoring = True peak_monitor_thread = threading.Thread(target=self.peak_monitor_func) peak_monitor_thread.daemon = True peak_monitor_thread.start() def stop(self, stage): """stop tracking for the passed stage""" # deal with nested calls of eval during train - simply ignore those if self.cur_stage is not None and self.cur_stage != stage: return # this sends a signal to peak_monitor_func to complete its loop self.peak_monitoring = False # first ensure all objects get collected and their memory is freed gc.collect() if self.torch is not None: self.torch.cuda.empty_cache() # concepts: # - alloc_delta: the difference of allocated memory between the end and the start # - peaked_delta: the difference between the peak memory and the current memory # in order to know how much memory the measured code consumed one needs to sum these two # gpu if self.torch is not None: self.gpu_mem_used_now = self.torch.cuda.memory_allocated() self.gpu_mem_used_peak = self.torch.cuda.max_memory_allocated() self.gpu[self.cur_stage] = dict( alloc=(self.gpu_mem_used_now - self.gpu_mem_used_at_start), peaked=max(0, self.gpu_mem_used_peak - self.gpu_mem_used_now), ) # cpu self.cpu_mem_used_now = self.cpu_mem_used() self.cpu[self.cur_stage] = dict( alloc=(self.cpu_mem_used_now - self.cpu_mem_used_at_start), peaked=max(0, self.cpu_mem_used_peak - self.cpu_mem_used_now), ) # reset - cycle finished self.cur_stage = None def update_metrics(self, stage, metrics): """updates the metrics""" if self.skip_memory_metrics: return # deal with nested calls of eval during train - simply ignore those if self.cur_stage is not None and self.cur_stage != stage: return # since we don't have a way to return init metrics, we push them into the first of train/val/predict stages = [stage] if not self.init_reported: stages.insert(0, "init") self.init_reported = True for stage in stages: for t in ["alloc", "peaked"]: if stage in self.cpu and t in self.cpu[stage]: metrics[f"{stage}_mem_cpu_{t}_delta"] = self.cpu[stage][t] if self.torch is not None and stage in self.gpu and t in self.gpu[stage]: metrics[f"{stage}_mem_gpu_{t}_delta"] = self.gpu[stage][t] def stop_and_update_metrics(self, metrics=None): """combine stop and metrics update in one call for simpler code""" if self.skip_memory_metrics: return stage = self.derive_stage() self.stop(stage) # init doesn't have metrics to update so we just save that data for later stages to retrieve if metrics is not None: self.update_metrics(stage, metrics) def denumpify_detensorize(metrics): """ Recursively calls `.item()` on the element of the dictionary passed """ if isinstance(metrics, (list, tuple)): return type(metrics)(denumpify_detensorize(m) for m in metrics) elif isinstance(metrics, dict): return type(metrics)({k: denumpify_detensorize(v) for k, v in metrics.items()}) elif isinstance(metrics, np.generic): return metrics.item() elif is_torch_available() and isinstance(metrics, torch.Tensor) and metrics.numel() == 1: return metrics.item() return metrics def number_of_arguments(func): """ Return the number of arguments of the passed function, even if it's a partial function. """ if isinstance(func, functools.partial): total_args = len(inspect.signature(func.func).parameters) return total_args - len(func.args) - len(func.keywords) return len(inspect.signature(func).parameters) class ShardedDDPOption(ExplicitEnum): SIMPLE = "simple" ZERO_DP_2 = "zero_dp_2" ZERO_DP_3 = "zero_dp_3" OFFLOAD = "offload" AUTO_WRAP = "auto_wrap"