Source code for transformers.training_args

# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import json
import math
import os
import warnings
from dataclasses import asdict, dataclass, field
from enum import Enum
from pathlib import Path
from typing import Any, Dict, List, Optional

from .debug_utils import DebugOption
from .file_utils import (
    cached_property,
    is_sagemaker_dp_enabled,
    is_sagemaker_mp_enabled,
    is_torch_available,
    is_torch_tpu_available,
    torch_required,
)
from .trainer_utils import EvaluationStrategy, IntervalStrategy, SchedulerType, ShardedDDPOption
from .utils import logging


if is_torch_available():
    import torch

if is_torch_tpu_available():
    import torch_xla.core.xla_model as xm

if is_sagemaker_dp_enabled():
    import smdistributed.dataparallel.torch.distributed as sm_dist

if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp

    smp.init()


logger = logging.get_logger(__name__)
log_levels = logging.get_log_levels_dict().copy()
trainer_log_levels = dict(**log_levels, passive=-1)


def default_logdir() -> str:
    """
    Same default as PyTorch
    """
    import socket
    from datetime import datetime

    current_time = datetime.now().strftime("%b%d_%H-%M-%S")
    return os.path.join("runs", current_time + "_" + socket.gethostname())


[docs]@dataclass class TrainingArguments: """ TrainingArguments is the subset of the arguments we use in our example scripts **which relate to the training loop itself**. Using :class:`~transformers.HfArgumentParser` we can turn this class into `argparse <https://docs.python.org/3/library/argparse.html#module-argparse>`__ arguments that can be specified on the command line. Parameters: output_dir (:obj:`str`): The output directory where the model predictions and checkpoints will be written. overwrite_output_dir (:obj:`bool`, `optional`, defaults to :obj:`False`): If :obj:`True`, overwrite the content of the output directory. Use this to continue training if :obj:`output_dir` points to a checkpoint directory. do_train (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to run training or not. This argument is not directly used by :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more details. do_eval (:obj:`bool`, `optional`): Whether to run evaluation on the validation set or not. Will be set to :obj:`True` if :obj:`evaluation_strategy` is different from :obj:`"no"`. This argument is not directly used by :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more details. do_predict (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to run predictions on the test set or not. This argument is not directly used by :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more details. evaluation_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"no"`): The evaluation strategy to adopt during training. Possible values are: * :obj:`"no"`: No evaluation is done during training. * :obj:`"steps"`: Evaluation is done (and logged) every :obj:`eval_steps`. * :obj:`"epoch"`: Evaluation is done at the end of each epoch. prediction_loss_only (:obj:`bool`, `optional`, defaults to `False`): When performing evaluation and generating predictions, only returns the loss. per_device_train_batch_size (:obj:`int`, `optional`, defaults to 8): The batch size per GPU/TPU core/CPU for training. per_device_eval_batch_size (:obj:`int`, `optional`, defaults to 8): The batch size per GPU/TPU core/CPU for evaluation. gradient_accumulation_steps (:obj:`int`, `optional`, defaults to 1): Number of updates steps to accumulate the gradients for, before performing a backward/update pass. .. warning:: When using gradient accumulation, one step is counted as one step with backward pass. Therefore, logging, evaluation, save will be conducted every ``gradient_accumulation_steps * xxx_step`` training examples. eval_accumulation_steps (:obj:`int`, `optional`): Number of predictions steps to accumulate the output tensors for, before moving the results to the CPU. If left unset, the whole predictions are accumulated on GPU/TPU before being moved to the CPU (faster but requires more memory). learning_rate (:obj:`float`, `optional`, defaults to 5e-5): The initial learning rate for :class:`~transformers.AdamW` optimizer. weight_decay (:obj:`float`, `optional`, defaults to 0): The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights in :class:`~transformers.AdamW` optimizer. adam_beta1 (:obj:`float`, `optional`, defaults to 0.9): The beta1 hyperparameter for the :class:`~transformers.AdamW` optimizer. adam_beta2 (:obj:`float`, `optional`, defaults to 0.999): The beta2 hyperparameter for the :class:`~transformers.AdamW` optimizer. adam_epsilon (:obj:`float`, `optional`, defaults to 1e-8): The epsilon hyperparameter for the :class:`~transformers.AdamW` optimizer. max_grad_norm (:obj:`float`, `optional`, defaults to 1.0): Maximum gradient norm (for gradient clipping). num_train_epochs(:obj:`float`, `optional`, defaults to 3.0): Total number of training epochs to perform (if not an integer, will perform the decimal part percents of the last epoch before stopping training). max_steps (:obj:`int`, `optional`, defaults to -1): If set to a positive number, the total number of training steps to perform. Overrides :obj:`num_train_epochs`. lr_scheduler_type (:obj:`str` or :class:`~transformers.SchedulerType`, `optional`, defaults to :obj:`"linear"`): The scheduler type to use. See the documentation of :class:`~transformers.SchedulerType` for all possible values. warmup_ratio (:obj:`float`, `optional`, defaults to 0.0): Ratio of total training steps used for a linear warmup from 0 to :obj:`learning_rate`. warmup_steps (:obj:`int`, `optional`, defaults to 0): Number of steps used for a linear warmup from 0 to :obj:`learning_rate`. Overrides any effect of :obj:`warmup_ratio`. log_level (:obj:`str`, `optional`, defaults to ``passive``): Logger log level to use on the main process. Possible choices are the log levels as strings: 'debug', 'info', 'warning', 'error' and 'critical', plus a 'passive' level which doesn't set anything and lets the application set the level. log_level_replica (:obj:`str`, `optional`, defaults to ``passive``): Logger log level to use on replicas. Same choices as ``log_level``" log_on_each_node (:obj:`bool`, `optional`, defaults to :obj:`True`): In multinode distributed training, whether to log using :obj:`log_level` once per node, or only on the main node. logging_dir (:obj:`str`, `optional`): `TensorBoard <https://www.tensorflow.org/tensorboard>`__ log directory. Will default to `output_dir/runs/**CURRENT_DATETIME_HOSTNAME**`. logging_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"steps"`): The logging strategy to adopt during training. Possible values are: * :obj:`"no"`: No logging is done during training. * :obj:`"epoch"`: Logging is done at the end of each epoch. * :obj:`"steps"`: Logging is done every :obj:`logging_steps`. logging_first_step (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to log and evaluate the first :obj:`global_step` or not. logging_steps (:obj:`int`, `optional`, defaults to 500): Number of update steps between two logs if :obj:`logging_strategy="steps"`. save_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"steps"`): The checkpoint save strategy to adopt during training. Possible values are: * :obj:`"no"`: No save is done during training. * :obj:`"epoch"`: Save is done at the end of each epoch. * :obj:`"steps"`: Save is done every :obj:`save_steps`. save_steps (:obj:`int`, `optional`, defaults to 500): Number of updates steps before two checkpoint saves if :obj:`save_strategy="steps"`. save_total_limit (:obj:`int`, `optional`): If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in :obj:`output_dir`. save_on_each_node (:obj:`bool`, `optional`, defaults to :obj:`False`): When doing multi-node distributed training, whether to save models and checkpoints on each node, or only on the main one. This should not be activated when the different nodes use the same storage as the files will be saved with the same names for each node. no_cuda (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to not use CUDA even when it is available or not. seed (:obj:`int`, `optional`, defaults to 42): Random seed that will be set at the beginning of training. To ensure reproducibility across runs, use the :func:`~transformers.Trainer.model_init` function to instantiate the model if it has some randomly initialized parameters. fp16 (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to use 16-bit (mixed) precision training instead of 32-bit training. fp16_opt_level (:obj:`str`, `optional`, defaults to 'O1'): For :obj:`fp16` training, Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details on the `Apex documentation <https://nvidia.github.io/apex/amp.html>`__. fp16_backend (:obj:`str`, `optional`, defaults to :obj:`"auto"`): The backend to use for mixed precision training. Must be one of :obj:`"auto"`, :obj:`"amp"` or :obj:`"apex"`. :obj:`"auto"` will use AMP or APEX depending on the PyTorch version detected, while the other choices will force the requested backend. fp16_full_eval (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to use full 16-bit precision evaluation instead of 32-bit. This will be faster and save memory but can harm metric values. local_rank (:obj:`int`, `optional`, defaults to -1): Rank of the process during distributed training. tpu_num_cores (:obj:`int`, `optional`): When training on TPU, the number of TPU cores (automatically passed by launcher script). dataloader_drop_last (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size) or not. eval_steps (:obj:`int`, `optional`): Number of update steps between two evaluations if :obj:`evaluation_strategy="steps"`. Will default to the same value as :obj:`logging_steps` if not set. dataloader_num_workers (:obj:`int`, `optional`, defaults to 0): Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the main process. past_index (:obj:`int`, `optional`, defaults to -1): Some models like :doc:`TransformerXL <../model_doc/transformerxl>` or :doc:`XLNet <../model_doc/xlnet>` can make use of the past hidden states for their predictions. If this argument is set to a positive int, the ``Trainer`` will use the corresponding output (usually index 2) as the past state and feed it to the model at the next training step under the keyword argument ``mems``. run_name (:obj:`str`, `optional`): A descriptor for the run. Typically used for `wandb <https://www.wandb.com/>`_ logging. disable_tqdm (:obj:`bool`, `optional`): Whether or not to disable the tqdm progress bars and table of metrics produced by :class:`~transformers.notebook.NotebookTrainingTracker` in Jupyter Notebooks. Will default to :obj:`True` if the logging level is set to warn or lower (default), :obj:`False` otherwise. remove_unused_columns (:obj:`bool`, `optional`, defaults to :obj:`True`): If using :obj:`datasets.Dataset` datasets, whether or not to automatically remove the columns unused by the model forward method. (Note that this behavior is not implemented for :class:`~transformers.TFTrainer` yet.) label_names (:obj:`List[str]`, `optional`): The list of keys in your dictionary of inputs that correspond to the labels. Will eventually default to :obj:`["labels"]` except if the model used is one of the :obj:`XxxForQuestionAnswering` in which case it will default to :obj:`["start_positions", "end_positions"]`. load_best_model_at_end (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to load the best model found during training at the end of training. .. note:: When set to :obj:`True`, the parameters :obj:`save_strategy` needs to be the same as :obj:`eval_strategy`, and in the case it is "steps", :obj:`save_steps` must be a round multiple of :obj:`eval_steps`. metric_for_best_model (:obj:`str`, `optional`): Use in conjunction with :obj:`load_best_model_at_end` to specify the metric to use to compare two different models. Must be the name of a metric returned by the evaluation with or without the prefix :obj:`"eval_"`. Will default to :obj:`"loss"` if unspecified and :obj:`load_best_model_at_end=True` (to use the evaluation loss). If you set this value, :obj:`greater_is_better` will default to :obj:`True`. Don't forget to set it to :obj:`False` if your metric is better when lower. greater_is_better (:obj:`bool`, `optional`): Use in conjunction with :obj:`load_best_model_at_end` and :obj:`metric_for_best_model` to specify if better models should have a greater metric or not. Will default to: - :obj:`True` if :obj:`metric_for_best_model` is set to a value that isn't :obj:`"loss"` or :obj:`"eval_loss"`. - :obj:`False` if :obj:`metric_for_best_model` is not set, or set to :obj:`"loss"` or :obj:`"eval_loss"`. ignore_data_skip (:obj:`bool`, `optional`, defaults to :obj:`False`): When resuming training, whether or not to skip the epochs and batches to get the data loading at the same stage as in the previous training. If set to :obj:`True`, the training will begin faster (as that skipping step can take a long time) but will not yield the same results as the interrupted training would have. sharded_ddp (:obj:`bool`, :obj:`str` or list of :class:`~transformers.trainer_utils.ShardedDDPOption`, `optional`, defaults to :obj:`False`): Use Sharded DDP training from `FairScale <https://github.com/facebookresearch/fairscale>`__ (in distributed training only). This is an experimental feature. A list of options along the following: - :obj:`"simple"`: to use first instance of sharded DDP released by fairscale (:obj:`ShardedDDP`) similar to ZeRO-2. - :obj:`"zero_dp_2"`: to use the second instance of sharded DPP released by fairscale (:obj:`FullyShardedDDP`) in Zero-2 mode (with :obj:`reshard_after_forward=False`). - :obj:`"zero_dp_3"`: to use the second instance of sharded DPP released by fairscale (:obj:`FullyShardedDDP`) in Zero-3 mode (with :obj:`reshard_after_forward=True`). - :obj:`"offload"`: to add ZeRO-offload (only compatible with :obj:`"zero_dp_2"` and :obj:`"zero_dp_3"`). If a string is passed, it will be split on space. If a bool is passed, it will be converted to an empty list for :obj:`False` and :obj:`["simple"]` for :obj:`True`. deepspeed (:obj:`str` or :obj:`dict`, `optional`): Use `Deepspeed <https://github.com/microsoft/deepspeed>`__. This is an experimental feature and its API may evolve in the future. The value is either the location of DeepSpeed json config file (e.g., ``ds_config.json``) or an already loaded json file as a :obj:`dict`" label_smoothing_factor (:obj:`float`, `optional`, defaults to 0.0): The label smoothing factor to use. Zero means no label smoothing, otherwise the underlying onehot-encoded labels are changed from 0s and 1s to :obj:`label_smoothing_factor/num_labels` and :obj:`1 - label_smoothing_factor + label_smoothing_factor/num_labels` respectively. debug (:obj:`str` or list of :class:`~transformers.debug_utils.DebugOption`, `optional`, defaults to :obj:`""`): Enable one or more debug features. This is an experimental feature. Possible options are: - :obj:`"underflow_overflow"`: detects overflow in model's input/outputs and reports the last frames that led to the event - :obj:`"tpu_metrics_debug"`: print debug metrics on TPU The options should be separated by whitespaces. adafactor (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to use the :class:`~transformers.Adafactor` optimizer instead of :class:`~transformers.AdamW`. group_by_length (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to group together samples of roughly the same length in the training dataset (to minimize padding applied and be more efficient). Only useful if applying dynamic padding. length_column_name (:obj:`str`, `optional`, defaults to :obj:`"length"`): Column name for precomputed lengths. If the column exists, grouping by length will use these values rather than computing them on train startup. Ignored unless :obj:`group_by_length` is :obj:`True` and the dataset is an instance of :obj:`Dataset`. report_to (:obj:`str` or :obj:`List[str]`, `optional`, defaults to :obj:`"all"`): The list of integrations to report the results and logs to. Supported platforms are :obj:`"azure_ml"`, :obj:`"comet_ml"`, :obj:`"mlflow"`, :obj:`"tensorboard"` and :obj:`"wandb"`. Use :obj:`"all"` to report to all integrations installed, :obj:`"none"` for no integrations. ddp_find_unused_parameters (:obj:`bool`, `optional`): When using distributed training, the value of the flag :obj:`find_unused_parameters` passed to :obj:`DistributedDataParallel`. Will default to :obj:`False` if gradient checkpointing is used, :obj:`True` otherwise. dataloader_pin_memory (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether you want to pin memory in data loaders or not. Will default to :obj:`True`. skip_memory_metrics (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to skip adding of memory profiler reports to metrics. This is skipped by default because it slows down the training and evaluation speed. push_to_hub (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to upload the trained model to the hub after training. If this is activated, and :obj:`output_dir` exists, it needs to be a local clone of the repository to which the :class:`~transformers.Trainer` will be pushed. resume_from_checkpoint (:obj:`str`, `optional`): The path to a folder with a valid checkpoint for your model. This argument is not directly used by :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more details. push_to_hub_model_id (:obj:`str`, `optional`): The name of the repository to which push the :class:`~transformers.Trainer` when :obj:`push_to_hub=True`. Will default to the name of :obj:`output_dir`. push_to_hub_organization (:obj:`str`, `optional`): The name of the organization in with to which push the :class:`~transformers.Trainer`. push_to_hub_token (:obj:`str`, `optional`): The token to use to push the model to the Hub. Will default to the token in the cache folder obtained with :obj:`huggingface-cli login`. """ output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory." "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."}) evaluation_strategy: IntervalStrategy = field( default="no", metadata={"help": "The evaluation strategy to use."}, ) prediction_loss_only: bool = field( default=False, metadata={"help": "When performing evaluation and predictions, only returns the loss."}, ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) per_gpu_train_batch_size: Optional[int] = field( default=None, metadata={ "help": "Deprecated, the use of `--per_device_train_batch_size` is preferred. " "Batch size per GPU/TPU core/CPU for training." }, ) per_gpu_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Deprecated, the use of `--per_device_eval_batch_size` is preferred." "Batch size per GPU/TPU core/CPU for evaluation." }, ) gradient_accumulation_steps: int = field( default=1, metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."}, ) eval_accumulation_steps: Optional[int] = field( default=None, metadata={"help": "Number of predictions steps to accumulate before moving the tensors to the CPU."}, ) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."}) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) max_steps: int = field( default=-1, metadata={"help": "If > 0: set total number of training steps to perform. Override num_train_epochs."}, ) lr_scheduler_type: SchedulerType = field( default="linear", metadata={"help": "The scheduler type to use."}, ) warmup_ratio: float = field( default=0.0, metadata={"help": "Linear warmup over warmup_ratio fraction of total steps."} ) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) log_level: Optional[str] = field( default="passive", metadata={ "help": "Logger log level to use on the main node. Possible choices are the log levels as strings: 'debug', 'info', 'warning', 'error' and 'critical', plus a 'passive' level which doesn't set anything and lets the application set the level. Defaults to 'passive'.", "choices": trainer_log_levels.keys(), }, ) log_level_replica: Optional[str] = field( default="passive", metadata={ "help": "Logger log level to use on replica nodes. Same choices and defaults as ``log_level``", "choices": trainer_log_levels.keys(), }, ) log_on_each_node: bool = field( default=True, metadata={ "help": "When doing a multinode distributed training, whether to log once per node or just once on the main node." }, ) logging_dir: Optional[str] = field(default=None, metadata={"help": "Tensorboard log dir."}) logging_strategy: IntervalStrategy = field( default="steps", metadata={"help": "The logging strategy to use."}, ) logging_first_step: bool = field(default=False, metadata={"help": "Log the first global_step"}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) save_strategy: IntervalStrategy = field( default="steps", metadata={"help": "The checkpoint save strategy to use."}, ) save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) save_total_limit: Optional[int] = field( default=None, metadata={ "help": ( "Limit the total amount of checkpoints." "Deletes the older checkpoints in the output_dir. Default is unlimited checkpoints" ) }, ) save_on_each_node: bool = field( default=False, metadata={ "help": "When doing multi-node distributed training, whether to save models and checkpoints on each node, or only on the main one" }, ) no_cuda: bool = field(default=False, metadata={"help": "Do not use CUDA even when it is available"}) seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) fp16: bool = field( default=False, metadata={"help": "Whether to use 16-bit (mixed) precision instead of 32-bit"}, ) fp16_opt_level: str = field( default="O1", metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) }, ) fp16_backend: str = field( default="auto", metadata={"help": "The backend to be used for mixed precision.", "choices": ["auto", "amp", "apex"]}, ) fp16_full_eval: bool = field( default=False, metadata={"help": "Whether to use full 16-bit precision evaluation instead of 32-bit"}, ) local_rank: int = field(default=-1, metadata={"help": "For distributed training: local_rank"}) tpu_num_cores: Optional[int] = field( default=None, metadata={"help": "TPU: Number of TPU cores (automatically passed by launcher script)"} ) tpu_metrics_debug: bool = field( default=False, metadata={ "help": "Deprecated, the use of `--debug tpu_metrics_debug` is preferred. TPU: Whether to print debug metrics" }, ) debug: str = field( default="", metadata={ "help": "Whether or not to enable debug mode. Current options: " "`underflow_overflow` (Detect underflow and overflow in activations and weights), " "`tpu_metrics_debug` (print debug metrics on TPU)." }, ) dataloader_drop_last: bool = field( default=False, metadata={"help": "Drop the last incomplete batch if it is not divisible by the batch size."} ) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) dataloader_num_workers: int = field( default=0, metadata={ "help": "Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the main process." }, ) past_index: int = field( default=-1, metadata={"help": "If >=0, uses the corresponding part of the output as the past state for next step."}, ) run_name: Optional[str] = field( default=None, metadata={"help": "An optional descriptor for the run. Notably used for wandb logging."} ) disable_tqdm: Optional[bool] = field( default=None, metadata={"help": "Whether or not to disable the tqdm progress bars."} ) remove_unused_columns: Optional[bool] = field( default=True, metadata={"help": "Remove columns not required by the model when using an nlp.Dataset."} ) label_names: Optional[List[str]] = field( default=None, metadata={"help": "The list of keys in your dictionary of inputs that correspond to the labels."} ) load_best_model_at_end: Optional[bool] = field( default=False, metadata={"help": "Whether or not to load the best model found during training at the end of training."}, ) metric_for_best_model: Optional[str] = field( default=None, metadata={"help": "The metric to use to compare two different models."} ) greater_is_better: Optional[bool] = field( default=None, metadata={"help": "Whether the `metric_for_best_model` should be maximized or not."} ) ignore_data_skip: bool = field( default=False, metadata={ "help": "When resuming training, whether or not to skip the first epochs and batches to get to the same training data." }, ) sharded_ddp: str = field( default="", metadata={ "help": "Whether or not to use sharded DDP training (in distributed training only). The base option " "should be `simple`, `zero_dp_2` or `zero_dp_3` and you can add CPU-offload to `zero_dp_2` or `zero_dp_3` " "like this: zero_dp_2 offload` or `zero_dp_3 offload`. You can add auto-wrap to `zero_dp_2` or " "with the same syntax: zero_dp_2 auto_wrap` or `zero_dp_3 auto_wrap`.", }, ) deepspeed: Optional[str] = field( default=None, metadata={ "help": "Enable deepspeed and pass the path to deepspeed json config file (e.g. ds_config.json) or an already loaded json file as a dict" }, ) label_smoothing_factor: float = field( default=0.0, metadata={"help": "The label smoothing epsilon to apply (zero means no label smoothing)."} ) adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) group_by_length: bool = field( default=False, metadata={"help": "Whether or not to group samples of roughly the same length together when batching."}, ) length_column_name: Optional[str] = field( default="length", metadata={"help": "Column name with precomputed lengths to use when grouping by length."}, ) report_to: Optional[List[str]] = field( default=None, metadata={"help": "The list of integrations to report the results and logs to."} ) ddp_find_unused_parameters: Optional[bool] = field( default=None, metadata={ "help": "When using distributed training, the value of the flag `find_unused_parameters` passed to " "`DistributedDataParallel`." }, ) dataloader_pin_memory: bool = field( default=True, metadata={"help": "Whether or not to pin memory for DataLoader."} ) skip_memory_metrics: bool = field( default=True, metadata={"help": "Whether or not to skip adding of memory profiler reports to metrics."} ) use_legacy_prediction_loop: bool = field( default=False, metadata={"help": "Whether or not to use the legacy prediction_loop in the Trainer."} ) push_to_hub: bool = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) resume_from_checkpoint: Optional[str] = field( default=None, metadata={"help": "The path to a folder with a valid checkpoint for your model."}, ) push_to_hub_model_id: str = field( default=None, metadata={"help": "The name of the repository to which push the `Trainer`."} ) push_to_hub_organization: str = field( default=None, metadata={"help": "The name of the organization in with to which push the `Trainer`."} ) push_to_hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) _n_gpu: int = field(init=False, repr=False, default=-1) mp_parameters: str = field( default="", metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in Trainer"}, ) def __post_init__(self): # Handle --use_env option in torch.distributed.launch (local_rank not passed as an arg then). # This needs to happen before any call to self.device or self.n_gpu. env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != self.local_rank: self.local_rank = env_local_rank # convert to int self.log_level = trainer_log_levels[self.log_level] self.log_level_replica = trainer_log_levels[self.log_level_replica] # expand paths, if not os.makedirs("~/bar") will make directory # in the current directory instead of the actual home #  see https://github.com/huggingface/transformers/issues/10628 if self.output_dir is not None: self.output_dir = os.path.expanduser(self.output_dir) if self.logging_dir is None and self.output_dir is not None: self.logging_dir = os.path.join(self.output_dir, default_logdir()) if self.logging_dir is not None: self.logging_dir = os.path.expanduser(self.logging_dir) if self.disable_tqdm is None: self.disable_tqdm = logger.getEffectiveLevel() > logging.WARN if isinstance(self.evaluation_strategy, EvaluationStrategy): warnings.warn( "using `EvaluationStrategy` for `evaluation_strategy` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `IntervalStrategy` instead", FutureWarning, ) # Go back to the underlying string or we won't be able to instantiate `IntervalStrategy` on it. self.evaluation_strategy = self.evaluation_strategy.value self.evaluation_strategy = IntervalStrategy(self.evaluation_strategy) self.logging_strategy = IntervalStrategy(self.logging_strategy) self.save_strategy = IntervalStrategy(self.save_strategy) self.lr_scheduler_type = SchedulerType(self.lr_scheduler_type) if self.do_eval is False and self.evaluation_strategy != IntervalStrategy.NO: self.do_eval = True # eval_steps has to be defined and non-zero, fallbacks to logging_steps if the latter is non-zero if self.evaluation_strategy == IntervalStrategy.STEPS and (self.eval_steps is None or self.eval_steps == 0): if self.logging_steps > 0: logger.info(f"using `logging_steps` to initialize `eval_steps` to {self.logging_steps}") self.eval_steps = self.logging_steps else: raise ValueError( f"evaluation strategy {self.evaluation_strategy} requires either non-zero --eval_steps or --logging_steps" ) # logging_steps must be non-zero for logging_strategy that is other than 'no' if self.logging_strategy == IntervalStrategy.STEPS and self.logging_steps == 0: raise ValueError(f"logging strategy {self.logging_strategy} requires non-zero --logging_steps") # Sanity checks for load_best_model_at_end: we require save and eval strategies to be compatible. if self.load_best_model_at_end: if self.evaluation_strategy != self.save_strategy: raise ValueError( "--load_best_model_at_end requires the save and eval strategy to match, but found\n- Evaluation " f"strategy: {self.evaluation_strategy}\n- Save strategy: {self.save_strategy}" ) if self.evaluation_strategy == IntervalStrategy.STEPS and self.save_steps % self.eval_steps != 0: raise ValueError( "--load_best_model_at_end requires the saving steps to be a round multiple of the evaluation " f"steps, but found {self.save_steps}, which is not a round multiple of {self.eval_steps}." ) if self.load_best_model_at_end and self.metric_for_best_model is None: self.metric_for_best_model = "loss" if self.greater_is_better is None and self.metric_for_best_model is not None: self.greater_is_better = self.metric_for_best_model not in ["loss", "eval_loss"] if self.run_name is None: self.run_name = self.output_dir if is_torch_available() and self.device.type != "cuda" and (self.fp16 or self.fp16_full_eval): raise ValueError( "Mixed precision training with AMP or APEX (`--fp16`) and FP16 evaluation can only be used on CUDA devices." ) if self.report_to is None: logger.info( "The default value for the training argument `--report_to` will change in v5 (from all installed " "integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as " "now. You should start updating your code and make this info disappear :-)." ) self.report_to = "all" if self.report_to == "all" or self.report_to == ["all"]: # Import at runtime to avoid a circular import. from .integrations import get_available_reporting_integrations self.report_to = get_available_reporting_integrations() elif self.report_to == "none" or self.report_to == ["none"]: self.report_to = [] elif not isinstance(self.report_to, list): self.report_to = [self.report_to] if self.warmup_ratio < 0 or self.warmup_ratio > 1: raise ValueError("warmup_ratio must lie in range [0,1]") elif self.warmup_ratio > 0 and self.warmup_steps > 0: logger.info( "Both warmup_ratio and warmup_steps given, warmup_steps will override any effect of warmup_ratio during training" ) if isinstance(self.sharded_ddp, bool): self.sharded_ddp = "simple" if self.sharded_ddp else "" if isinstance(self.sharded_ddp, str): self.sharded_ddp = [ShardedDDPOption(s) for s in self.sharded_ddp.split()] if self.sharded_ddp == [ShardedDDPOption.OFFLOAD]: raise ValueError( "`--sharded_ddp offload` can't work on its own. It needs to be added to `--sharded_ddp zero_dp_2` or " '`--sharded_ddp zero_dp_3`. For example, `--sharded_ddp "zero_dp_2 offload"`.' ) elif len(self.sharded_ddp) > 1 and ShardedDDPOption.SIMPLE in self.sharded_ddp: raise ValueError("`--sharded_ddp simple` is not compatible with any other option.") elif ShardedDDPOption.ZERO_DP_2 in self.sharded_ddp and ShardedDDPOption.ZERO_DP_3 in self.sharded_ddp: raise ValueError("`--sharded_ddp zero_dp_2` is not compatible with `--sharded_ddp zero_dp_3`.") if self.tpu_metrics_debug: warnings.warn( "using `--tpu_metrics_debug` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--debug tpu_metrics_debug` instead", FutureWarning, ) self.debug += " tpu_metrics_debug" self.tpu_metrics_debug = False if isinstance(self.debug, str): self.debug = [DebugOption(s) for s in self.debug.split()] if self.deepspeed: # - must be run very last in arg parsing, since it will use a lot of these settings. # - must be run before the model is created. from transformers.deepspeed import HfTrainerDeepSpeedConfig # will be used later by the Trainer # note: leave self.deepspeed unmodified in case a user relies on it not to be modified) self.hf_deepspeed_config = HfTrainerDeepSpeedConfig(self.deepspeed) self.hf_deepspeed_config.trainer_config_process(self) if self.push_to_hub_model_id is None: self.push_to_hub_model_id = Path(self.output_dir).name def __str__(self): self_as_dict = asdict(self) # Remove deprecated arguments. That code should be removed once # those deprecated arguments are removed from TrainingArguments. (TODO: v5) del self_as_dict["per_gpu_train_batch_size"] del self_as_dict["per_gpu_eval_batch_size"] attrs_as_str = [f"{k}={v},\n" for k, v in sorted(self_as_dict.items())] return f"{self.__class__.__name__}(\n{''.join(attrs_as_str)})" __repr__ = __str__ @property def train_batch_size(self) -> int: """ The actual batch size for training (may differ from :obj:`per_gpu_train_batch_size` in distributed training). """ if self.per_gpu_train_batch_size: logger.warning( "Using deprecated `--per_gpu_train_batch_size` argument which will be removed in a future " "version. Using `--per_device_train_batch_size` is preferred." ) per_device_batch_size = self.per_gpu_train_batch_size or self.per_device_train_batch_size train_batch_size = per_device_batch_size * max(1, self.n_gpu) return train_batch_size @property def eval_batch_size(self) -> int: """ The actual batch size for evaluation (may differ from :obj:`per_gpu_eval_batch_size` in distributed training). """ if self.per_gpu_eval_batch_size: logger.warning( "Using deprecated `--per_gpu_eval_batch_size` argument which will be removed in a future " "version. Using `--per_device_eval_batch_size` is preferred." ) per_device_batch_size = self.per_gpu_eval_batch_size or self.per_device_eval_batch_size eval_batch_size = per_device_batch_size * max(1, self.n_gpu) return eval_batch_size @cached_property @torch_required def _setup_devices(self) -> "torch.device": logger.info("PyTorch: setting up devices") if self.no_cuda: device = torch.device("cpu") self._n_gpu = 0 elif is_torch_tpu_available(): device = xm.xla_device() self._n_gpu = 0 elif is_sagemaker_mp_enabled(): local_rank = smp.local_rank() device = torch.device("cuda", local_rank) self._n_gpu = 1 elif is_sagemaker_dp_enabled(): sm_dist.init_process_group() self.local_rank = sm_dist.get_local_rank() device = torch.device("cuda", self.local_rank) self._n_gpu = 1 elif self.deepspeed: # deepspeed inits torch.distributed internally from .deepspeed import is_deepspeed_available if not is_deepspeed_available(): raise ImportError("--deepspeed requires deepspeed: `pip install deepspeed`.") import deepspeed deepspeed.init_distributed() # workaround for setups like notebooks where the launcher can't be used, # but deepspeed requires a dist env. # env LOCAL_RANK could be set manually by the user, or via init_distributed if mpi4py is installed self.local_rank = int(os.environ.get("LOCAL_RANK", "-1")) device = torch.device("cuda", self.local_rank) self._n_gpu = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. self._n_gpu = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs torch.distributed.init_process_group(backend="nccl") device = torch.device("cuda", self.local_rank) self._n_gpu = 1 if device.type == "cuda": torch.cuda.set_device(device) return device @property @torch_required def device(self) -> "torch.device": """ The device used by this process. """ return self._setup_devices @property @torch_required def n_gpu(self): """ The number of GPUs used by this process. Note: This will only be greater than one when you have multiple GPUs available but are not using distributed training. For distributed training, it will always be 1. """ # Make sure `self._n_gpu` is properly setup. _ = self._setup_devices return self._n_gpu @property @torch_required def parallel_mode(self): """ The current mode used for parallelism if multiple GPUs/TPU cores are available. One of: - :obj:`ParallelMode.NOT_PARALLEL`: no parallelism (CPU or one GPU). - :obj:`ParallelMode.NOT_DISTRIBUTED`: several GPUs in one single process (uses :obj:`torch.nn.DataParallel`). - :obj:`ParallelMode.DISTRIBUTED`: several GPUs, each having its own process (uses :obj:`torch.nn.DistributedDataParallel`). - :obj:`ParallelMode.TPU`: several TPU cores. """ if is_torch_tpu_available(): return ParallelMode.TPU elif is_sagemaker_mp_enabled(): return ParallelMode.SAGEMAKER_MODEL_PARALLEL elif is_sagemaker_dp_enabled(): return ParallelMode.SAGEMAKER_DATA_PARALLEL elif self.local_rank != -1: return ParallelMode.DISTRIBUTED elif self.n_gpu > 1: return ParallelMode.NOT_DISTRIBUTED else: return ParallelMode.NOT_PARALLEL @property @torch_required def world_size(self): """ The number of processes used in parallel. """ if is_torch_tpu_available(): return xm.xrt_world_size() elif is_sagemaker_mp_enabled(): return smp.dp_size() elif is_sagemaker_dp_enabled(): return sm_dist.get_world_size() elif self.local_rank != -1: return torch.distributed.get_world_size() return 1 @property @torch_required def process_index(self): """ The index of the current process used. """ if is_torch_tpu_available(): return xm.get_ordinal() elif is_sagemaker_mp_enabled(): return smp.dp_rank() elif is_sagemaker_dp_enabled(): return sm_dist.get_rank() elif self.local_rank != -1: return torch.distributed.get_rank() return 0 @property @torch_required def local_process_index(self): """ The index of the local process used. """ if is_torch_tpu_available(): return xm.get_local_ordinal() elif is_sagemaker_mp_enabled(): return smp.local_rank() elif is_sagemaker_dp_enabled(): return sm_dist.get_rank() elif self.local_rank != -1: return self.local_rank return 0 @property def should_log(self): """ Whether or not the current process should produce log. """ if self.log_on_each_node: return self.local_process_index == 0 else: if is_sagemaker_mp_enabled(): return smp.rank() == 0 else: return self.process_index == 0 @property def should_save(self): """ Whether or not the current process should write to disk, e.g., to save models and checkpoints. """ if self.save_on_each_node: return self.local_process_index == 0 else: if is_sagemaker_mp_enabled(): return smp.rank() == 0 else: return self.process_index == 0
[docs] def get_process_log_level(self): """ Returns the log level to be used depending on whether this process is the main process of node 0, main process of node non-0, or a non-main process. For the main process the log level defaults to ``logging.INFO`` unless overridden by ``log_level`` argument. For the replica processes the log level defaults to ``logging.WARNING`` unless overridden by ``log_level_replica`` argument. The choice between the main and replica process settings is made according to the return value of ``should_log``. """ log_level_main_node = logging.INFO if self.log_level == -1 else self.log_level log_level_replica_node = logging.WARNING if self.log_level_replica == -1 else self.log_level_replica return log_level_main_node if self.should_log else log_level_replica_node
@property def place_model_on_device(self): """ Can be subclassed and overridden for some specific integrations. """ return not is_sagemaker_mp_enabled() @property def _no_sync_in_gradient_accumulation(self): """ Whether or not to use no_sync for the gradients when doing gradient accumulation. """ return not (self.deepspeed or is_sagemaker_dp_enabled() or is_sagemaker_mp_enabled())
[docs] @contextlib.contextmanager def main_process_first(self, local=True, desc="work"): """ A context manager for torch distributed environment where on needs to do something on the main process, while blocking replicas, and when it's finished releasing the replicas. One such use is for ``datasets``'s ``map`` feature which to be efficient should be run once on the main process, which upon completion saves a cached version of results and which then automatically gets loaded by the replicas. Args: local (:obj:`bool`, `optional`, defaults to :obj:`True`): if :obj:`True` first means process of rank 0 of each node if :obj:`False` first means process of rank 0 of node rank 0 In multi-node environment with a shared filesystem you most likely will want to use ``local=False`` so that only the main process of the first node will do the processing. If however, the filesystem is not shared, then the main process of each node will need to do the processing, which is the default behavior. desc (:obj:`str`, `optional`, defaults to ``"work"``): a work description to be used in debug logs """ if is_torch_available() and self.world_size > 1: if local: is_main_process = self.local_process_index == 0 main_process_desc = "main local process" else: is_main_process = self.process_index == 0 main_process_desc = "main process" try: if not is_main_process: # tell all replicas to wait logger.debug(f"{self.process_index}: waiting for the {main_process_desc} to perform {desc}") if is_torch_tpu_available(): xm.rendezvous(desc) elif is_sagemaker_dp_enabled(): sm_dist.barrier() else: torch.distributed.barrier() yield finally: if is_main_process: # the wait is over logger.debug(f"{self.process_index}: {main_process_desc} completed {desc}, releasing all replicas") if is_torch_tpu_available(): xm.rendezvous(desc) elif is_sagemaker_dp_enabled(): sm_dist.barrier() else: torch.distributed.barrier() else: yield
[docs] def get_warmup_steps(self, num_training_steps: int): """ Get number of steps used for a linear warmup. """ warmup_steps = ( self.warmup_steps if self.warmup_steps > 0 else math.ceil(num_training_steps * self.warmup_ratio) ) return warmup_steps
[docs] def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). """ d = asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): d[k] = [x.value for x in v] return d
[docs] def to_json_string(self): """ Serializes this instance to a JSON string. """ return json.dumps(self.to_dict(), indent=2)
[docs] def to_sanitized_dict(self) -> Dict[str, Any]: """ Sanitized serialization to use with TensorBoard’s hparams """ d = self.to_dict() d = {**d, **{"train_batch_size": self.train_batch_size, "eval_batch_size": self.eval_batch_size}} valid_types = [bool, int, float, str] if is_torch_available(): valid_types.append(torch.Tensor) return {k: v if type(v) in valid_types else str(v) for k, v in d.items()}
class ParallelMode(Enum): NOT_PARALLEL = "not_parallel" NOT_DISTRIBUTED = "not_distributed" DISTRIBUTED = "distributed" SAGEMAKER_MODEL_PARALLEL = "sagemaker_model_parallel" SAGEMAKER_DATA_PARALLEL = "sagemaker_data_parallel" TPU = "tpu"