Source code for transformers.models.roformer.modeling_roformer

# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch RoFormer model. """


import math
import os
from typing import Optional

import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss

from ...activations import ACT2FN
from ...file_utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
)
from ...modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
from ...modeling_utils import (
    PreTrainedModel,
    SequenceSummary,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)
from ...utils import logging
from .configuration_roformer import RoFormerConfig


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "junnyu/roformer_chinese_base"
_CONFIG_FOR_DOC = "RoFormerConfig"
_TOKENIZER_FOR_DOC = "RoFormerTokenizer"

ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "junnyu/roformer_chinese_small",
    "junnyu/roformer_chinese_base",
    "junnyu/roformer_chinese_char_small",
    "junnyu/roformer_chinese_char_base",
    "junnyu/roformer_small_discriminator",
    "junnyu/roformer_small_generator"
    # See all RoFormer models at https://huggingface.co/models?filter=roformer
]


# Copied from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding with Marian->RoFormer
class RoFormerSinusoidalPositionalEmbedding(nn.Embedding):
    """This module produces sinusoidal positional embeddings of any length."""

    def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
        super().__init__(num_positions, embedding_dim)
        self.weight = self._init_weight(self.weight)

    @staticmethod
    def _init_weight(out: nn.Parameter):
        """
        Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
        the 2nd half of the vector. [dim // 2:]
        """
        n_pos, dim = out.shape
        position_enc = np.array(
            [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
        )
        out.requires_grad = False  # set early to avoid an error in pytorch-1.8+
        sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
        out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
        out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
        out.detach_()
        return out

    @torch.no_grad()
    def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
        """`input_ids_shape` is expected to be [bsz x seqlen]."""
        bsz, seq_len = input_ids_shape[:2]
        positions = torch.arange(
            past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
        )
        return super().forward(positions)


def load_tf_weights_in_roformer(model, config, tf_checkpoint_path):
    """Load tf checkpoints in a pytorch model."""
    try:
        import re

        import numpy as np
        import tensorflow as tf
    except ImportError:
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info(f"Loading TF weight {name} with shape {shape}")
        array = tf.train.load_variable(tf_path, name)
        names.append(name.replace("bert", "roformer"))
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split("/")
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if any(
            n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
            for n in name
        ):
            logger.info(f"Skipping {'/'.join(name)}")
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
                scope_names = re.split(r"_(\d+)", m_name)
            else:
                scope_names = [m_name]
            if scope_names[0] == "kernel" or scope_names[0] == "gamma":
                pointer = getattr(pointer, "weight")
            elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
                pointer = getattr(pointer, "bias")
            elif scope_names[0] == "output_weights":
                pointer = getattr(pointer, "weight")
            elif scope_names[0] == "squad":
                pointer = getattr(pointer, "classifier")
            else:
                try:
                    pointer = getattr(pointer, scope_names[0])
                except AttributeError:
                    logger.info(f"Skipping {'/'.join(name)}")
                    continue
            if len(scope_names) >= 2:
                num = int(scope_names[1])
                pointer = pointer[num]
        if m_name[-11:] == "_embeddings":
            pointer = getattr(pointer, "weight")
        elif m_name == "kernel":
            array = np.transpose(array)
        try:
            assert (
                pointer.shape == array.shape
            ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        logger.info(f"Initialize PyTorch weight {name}")
        pointer.data = torch.from_numpy(array)
    return model


class RoFormerEmbeddings(nn.Module):
    """Construct the embeddings from word and token_type embeddings."""

    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids=None, token_type_ids=None, inputs_embeds=None):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=inputs_embeds.device)

        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + token_type_embeddings

        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class RoFormerSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

        self.is_decoder = config.is_decoder
        self.rotary_value = config.rotary_value

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        sinusoidal_pos=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_value=None,
        output_attentions=False,
    ):
        mixed_query_layer = self.query(hidden_states)
        query_layer = self.transpose_for_scores(mixed_query_layer)
        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        is_cross_attention = encoder_hidden_states is not None

        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_layer = past_key_value[0]
            value_layer = past_key_value[1]
            attention_mask = encoder_attention_mask
        elif is_cross_attention:
            key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
            value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
            attention_mask = encoder_attention_mask
        elif past_key_value is not None:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
            key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
            value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
        else:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
            if sinusoidal_pos is not None:
                if self.rotary_value:
                    query_layer, key_layer, value_layer = self.apply_rotary_position_embeddings(
                        sinusoidal_pos, query_layer, key_layer, value_layer
                    )
                else:
                    query_layer, key_layer = self.apply_rotary_position_embeddings(
                        sinusoidal_pos, query_layer, key_layer
                    )
        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_layer, value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in RoFormerModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        if self.is_decoder:
            outputs = outputs + (past_key_value,)
        return outputs

    @staticmethod
    def apply_rotary_position_embeddings(sinusoidal_pos, query_layer, key_layer, value_layer=None):
        # https://kexue.fm/archives/8265
        # sin [batch_size, num_heads, sequence_length, embed_size_per_head//2]
        # cos [batch_size, num_heads, sequence_length, embed_size_per_head//2]
        sin, cos = sinusoidal_pos.chunk(2, dim=-1)
        # sin [θ0,θ1,θ2......θd/2-1] -> sin_pos [θ0,θ0,θ1,θ1,θ2,θ2......θd/2-1,θd/2-1]
        sin_pos = torch.stack([sin, sin], dim=-1).reshape_as(sinusoidal_pos)
        # cos [θ0,θ1,θ2......θd/2-1] -> cos_pos [θ0,θ0,θ1,θ1,θ2,θ2......θd/2-1,θd/2-1]
        cos_pos = torch.stack([cos, cos], dim=-1).reshape_as(sinusoidal_pos)
        # rotate_half_query_layer [-q1,q0,-q3,q2......,-qd-1,qd-2]
        rotate_half_query_layer = torch.stack([-query_layer[..., 1::2], query_layer[..., ::2]], dim=-1).reshape_as(
            query_layer
        )
        query_layer = query_layer * cos_pos + rotate_half_query_layer * sin_pos
        # rotate_half_key_layer [-k1,k0,-k3,k2......,-kd-1,kd-2]
        rotate_half_key_layer = torch.stack([-key_layer[..., 1::2], key_layer[..., ::2]], dim=-1).reshape_as(key_layer)
        key_layer = key_layer * cos_pos + rotate_half_key_layer * sin_pos
        if value_layer is not None:
            # rotate_half_value_layer [-v1,v0,-v3,v2......,-vd-1,vd-2]
            rotate_half_value_layer = torch.stack([-value_layer[..., 1::2], value_layer[..., ::2]], dim=-1).reshape_as(
                value_layer
            )
            value_layer = value_layer * cos_pos + rotate_half_value_layer * sin_pos
            return query_layer, key_layer, value_layer
        return query_layer, key_layer


# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->RoFormer
class RoFormerSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class RoFormerAttention(nn.Module):
    # Copied from transformers.models.bert.modeling_bert.BertAttention.__init__ with Bert->RoFormer
    def __init__(self, config):
        super().__init__()
        self.self = RoFormerSelfAttention(config)
        self.output = RoFormerSelfOutput(config)
        self.pruned_heads = set()

    # End Copy
    # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads
    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    # End Copy
    def forward(
        self,
        hidden_states,
        attention_mask=None,
        sinusoidal_pos=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_value=None,
        output_attentions=False,
    ):
        self_outputs = self.self(
            hidden_states,
            attention_mask,
            sinusoidal_pos,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            past_key_value,
            output_attentions,
        )
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->RoFormer
class RoFormerIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->RoFormer
class RoFormerOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class RoFormerLayer(nn.Module):
    # Copied from transformers.models.bert.modeling_bert.BertLayer.__init__ with Bert->RoFormer
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = RoFormerAttention(config)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
            assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
            self.crossattention = RoFormerAttention(config)
        self.intermediate = RoFormerIntermediate(config)
        self.output = RoFormerOutput(config)

    # End Copy
    def forward(
        self,
        hidden_states,
        attention_mask=None,
        sinusoidal_pos=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_value=None,
        output_attentions=False,
    ):
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            sinusoidal_pos,
            head_mask,
            output_attentions=output_attentions,
            past_key_value=self_attn_past_key_value,
        )
        attention_output = self_attention_outputs[0]

        # if decoder, the last output is tuple of self-attn cache
        if self.is_decoder:
            outputs = self_attention_outputs[1:-1]
            present_key_value = self_attention_outputs[-1]
        else:
            outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        cross_attn_present_key_value = None
        if self.is_decoder and encoder_hidden_states is not None:
            if not hasattr(self, "crossattention"):
                raise ValueError(
                    f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention "
                    "layers by setting `config.add_cross_attention=True`"
                )

            # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask,
                sinusoidal_pos,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                cross_attn_past_key_value,
                output_attentions,
            )
            attention_output = cross_attention_outputs[0]
            outputs = outputs + cross_attention_outputs[1:-1]  # add cross attentions if we output attention weights

            # add cross-attn cache to positions 3,4 of present_key_value tuple
            cross_attn_present_key_value = cross_attention_outputs[-1]
            present_key_value = present_key_value + cross_attn_present_key_value

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )
        outputs = (layer_output,) + outputs

        # if decoder, return the attn key/values as the last output
        if self.is_decoder:
            outputs = outputs + (present_key_value,)

        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


class RoFormerEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.embed_positions = RoFormerSinusoidalPositionalEmbedding(
            config.max_position_embeddings, config.hidden_size // config.num_attention_heads
        )
        self.layer = nn.ModuleList([RoFormerLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None

        # [sequence_length, embed_size_per_head] -> [batch_size, num_heads, sequence_length, embed_size_per_head]
        sinusoidal_pos = self.embed_positions(hidden_states.shape[:-1])[None, None, :, :]

        next_decoder_cache = () if use_cache else None
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None
            past_key_value = past_key_values[i] if past_key_values is not None else None

            if getattr(self.config, "gradient_checkpointing", False) and self.training:

                if use_cache:
                    logger.warning(
                        "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
                        "`use_cache=False`..."
                    )
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, past_key_value, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    sinusoidal_pos,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    sinusoidal_pos,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    past_key_value,
                    output_attentions,
                )

            hidden_states = layer_outputs[0]
            if use_cache:
                next_decoder_cache += (layer_outputs[-1],)
            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[2],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    next_decoder_cache,
                    all_hidden_states,
                    all_self_attentions,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_decoder_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


class RoFormerPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.embedding_size)
        if isinstance(config.hidden_act, str):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
        self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class RoFormerLMPredictionHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.transform = RoFormerPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(config.embedding_size, config.vocab_size, bias=False)

        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states)
        return hidden_states


# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->RoFormer
class RoFormerOnlyMLMHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = RoFormerLMPredictionHead(config)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class RoFormerPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = RoFormerConfig
    load_tf_weights = load_tf_weights_in_roformer
    base_model_prefix = "roformer"
    _keys_to_ignore_on_load_missing = []
    _keys_to_ignore_on_load_unexpected = [
        r"roformer\.embeddings_project\.weight",
        r"roformer\.embeddings_project\.bias",
    ]

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, RoFormerSinusoidalPositionalEmbedding):
            pass
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


ROFORMER_START_DOCSTRING = r"""
    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config (:class:`~transformers.RoFormerConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.
"""

ROFORMER_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`transformers.RoFormerTokenizer`. See
            :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.__call__` for
            details.

            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            `What are attention masks? <../glossary.html#attention-mask>`__
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
            1]``:

            - 0 corresponds to a `sentence A` token,
            - 1 corresponds to a `sentence B` token.

            `What are token type IDs? <../glossary.html#token-type-ids>`_
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""


[docs]@add_start_docstrings( "The bare RoFormer Model transformer outputting raw hidden-states without any specific head on top.", ROFORMER_START_DOCSTRING, ) class RoFormerModel(RoFormerPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in `Attention is all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration set to :obj:`True`. To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder` argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config): super().__init__(config) self.config = config self.embeddings = RoFormerEmbeddings(config) if config.embedding_size != config.hidden_size: self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size) self.encoder = RoFormerEncoder(config) self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads)
[docs] @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) if hasattr(self, "embeddings_project"): embedding_output = self.embeddings_project(embedding_output) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=sequence_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, )
[docs]@add_start_docstrings("""RoFormer Model with a `language modeling` head on top. """, ROFORMER_START_DOCSTRING) class RoFormerForMaskedLM(RoFormerPreTrainedModel): def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `RoFormerForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.roformer = RoFormerModel(config) self.cls = RoFormerOnlyMLMHead(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings
[docs] @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token assert self.config.pad_token_id is not None, "The PAD token should be defined for generation" attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask}
[docs]@add_start_docstrings( """RoFormer Model with a `language modeling` head on top for CLM fine-tuning. """, ROFORMER_START_DOCSTRING ) class RoFormerForCausalLM(RoFormerPreTrainedModel): _keys_to_ignore_on_load_missing = [r"predictions.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `RoFormerForCausalLM` as a standalone, add `is_decoder=True.`") self.roformer = RoFormerModel(config) self.cls = RoFormerOnlyMLMHead(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings
[docs] @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). Returns: Example:: >>> from transformers import RoFormerTokenizer, RoFormerForCausalLM, RoFormerConfig >>> import torch >>> tokenizer = RoFormerTokenizer.from_pretrained('junnyu/roformer_chinese_base') >>> config = RoFormerConfig.from_pretrained("junnyu/roformer_chinese_base") >>> config.is_decoder = True >>> model = RoFormerForCausalLM.from_pretrained('junnyu/roformer_chinese_base', config=config) >>> inputs = tokenizer("今天天气非常好。", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past} def _reorder_cache(self, past, beam_idx): reordered_past = () for layer_past in past: reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past
class RoFormerClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) self.config = config def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) x = self.dropout(x) x = self.out_proj(x) return x
[docs]@add_start_docstrings( """ RoFormer Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ROFORMER_START_DOCSTRING, ) class RoFormerForSequenceClassification(RoFormerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roformer = RoFormerModel(config) self.classifier = RoFormerClassificationHead(config) self.init_weights()
[docs] @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
[docs]@add_start_docstrings( """ RoFormer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ROFORMER_START_DOCSTRING, ) class RoFormerForMultipleChoice(RoFormerPreTrainedModel): def __init__(self, config): super().__init__(config) self.roformer = RoFormerModel(config) self.sequence_summary = SequenceSummary(config) self.classifier = nn.Linear(config.hidden_size, 1) self.init_weights()
[docs] @add_start_docstrings_to_model_forward( ROFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.roformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] pooled_output = self.sequence_summary(sequence_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
[docs]@add_start_docstrings( """ RoFormer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ROFORMER_START_DOCSTRING, ) class RoFormerForTokenClassification(RoFormerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roformer = RoFormerModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights()
[docs] @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
[docs]@add_start_docstrings( """ RoFormer Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ROFORMER_START_DOCSTRING, ) class RoFormerForQuestionAnswering(RoFormerPreTrainedModel): def __init__(self, config): super().__init__(config) config.num_labels = 2 self.num_labels = config.num_labels self.roformer = RoFormerModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights()
[docs] @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )