Source code for transformers.models.hubert.modeling_hubert

# coding=utf-8
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Hubert model. """

from typing import Optional, Tuple, Union

import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss

from transformers.deepspeed import is_deepspeed_zero3_enabled

from ...activations import ACT2FN
from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_hubert import HubertConfig


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "HubertConfig"
_CHECKPOINT_FOR_DOC = "facebook/hubert-base-ls960"

HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "facebook/hubert-base-ls960",
    # See all Hubert models at https://huggingface.co/models?filter=hubert
]


# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
def _compute_mask_indices(
    shape: Tuple[int, int],
    mask_prob: float,
    mask_length: int,
    device: torch.device,
    attention_mask: Optional[torch.tensor] = None,
    min_masks: int = 0,
) -> torch.tensor:
    """
    Computes random mask spans for a given shape. Used to implement `SpecAugment: A Simple Data Augmentation Method for
    ASR <https://arxiv.org/abs/1904.08779>`__.

    Args:
        shape: the the shape for which to compute masks.
            should be of size 2 where first element is batch size and 2nd is timesteps
        mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
            number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
            however due to overlaps, the actual number will be smaller (unless no_overlap is True)
        mask_length: size of the mask
        min_masks: minimum number of masked spans

    """
    batch_size, sequence_length = shape

    if mask_length < 1:
        raise ValueError("`mask_length` has to be bigger than 0.")

    if mask_length > sequence_length:
        raise ValueError(
            f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
        )

    # compute number of masked spans in batch
    num_masked_spans = int(mask_prob * sequence_length / mask_length + torch.rand((1,)).item())
    num_masked_spans = max(num_masked_spans, min_masks)

    # make sure num masked indices <= sequence_length
    if num_masked_spans * mask_length > sequence_length:
        num_masked_spans = sequence_length // mask_length

    # SpecAugment mask to fill
    spec_aug_mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)

    # uniform distribution to sample from, make sure that offset samples are < sequence_length
    uniform_dist = torch.ones((batch_size, sequence_length - (mask_length - 1)), device=device)

    # get random indices to mask
    spec_aug_mask_idxs = torch.multinomial(uniform_dist, num_masked_spans)

    # expand masked indices to masked spans
    spec_aug_mask_idxs = (
        spec_aug_mask_idxs.unsqueeze(dim=-1)
        .expand((batch_size, num_masked_spans, mask_length))
        .reshape(batch_size, num_masked_spans * mask_length)
    )
    offsets = (
        torch.arange(mask_length, device=device)[None, None, :]
        .expand((batch_size, num_masked_spans, mask_length))
        .reshape(batch_size, num_masked_spans * mask_length)
    )
    spec_aug_mask_idxs = spec_aug_mask_idxs + offsets

    # scatter indices to mask
    spec_aug_mask = spec_aug_mask.scatter(1, spec_aug_mask_idxs, True)

    return spec_aug_mask


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->Hubert
class HubertNoLayerNormConvLayer(nn.Module):
    def __init__(self, config, layer_id=0):
        super().__init__()
        self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1
        self.out_conv_dim = config.conv_dim[layer_id]

        self.conv = nn.Conv1d(
            self.in_conv_dim,
            self.out_conv_dim,
            kernel_size=config.conv_kernel[layer_id],
            stride=config.conv_stride[layer_id],
            bias=config.conv_bias,
        )
        self.activation = ACT2FN[config.feat_extract_activation]

    def forward(self, hidden_states):
        hidden_states = self.conv(hidden_states)
        hidden_states = self.activation(hidden_states)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->Hubert
class HubertLayerNormConvLayer(nn.Module):
    def __init__(self, config, layer_id=0):
        super().__init__()
        self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1
        self.out_conv_dim = config.conv_dim[layer_id]

        self.conv = nn.Conv1d(
            self.in_conv_dim,
            self.out_conv_dim,
            kernel_size=config.conv_kernel[layer_id],
            stride=config.conv_stride[layer_id],
            bias=config.conv_bias,
        )
        self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
        self.activation = ACT2FN[config.feat_extract_activation]

    def forward(self, hidden_states):
        hidden_states = self.conv(hidden_states)

        hidden_states = hidden_states.transpose(-2, -1)
        hidden_states = self.layer_norm(hidden_states)
        hidden_states = hidden_states.transpose(-2, -1)

        hidden_states = self.activation(hidden_states)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->Hubert
class HubertGroupNormConvLayer(nn.Module):
    def __init__(self, config, layer_id=0):
        super().__init__()
        self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1
        self.out_conv_dim = config.conv_dim[layer_id]

        self.conv = nn.Conv1d(
            self.in_conv_dim,
            self.out_conv_dim,
            kernel_size=config.conv_kernel[layer_id],
            stride=config.conv_stride[layer_id],
            bias=config.conv_bias,
        )
        self.activation = ACT2FN[config.feat_extract_activation]

        self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)

    def forward(self, hidden_states):
        hidden_states = self.conv(hidden_states)
        hidden_states = self.layer_norm(hidden_states)
        hidden_states = self.activation(hidden_states)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->Hubert
class HubertPositionalConvEmbedding(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.conv = nn.Conv1d(
            config.hidden_size,
            config.hidden_size,
            kernel_size=config.num_conv_pos_embeddings,
            padding=config.num_conv_pos_embeddings // 2,
            groups=config.num_conv_pos_embedding_groups,
        )

        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
                self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
            deepspeed.zero.register_external_parameter(self, self.conv.weight_v)
            deepspeed.zero.register_external_parameter(self, self.conv.weight_g)
        else:
            self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)

        self.padding = HubertSamePadLayer(config.num_conv_pos_embeddings)
        self.activation = ACT2FN[config.feat_extract_activation]

    def forward(self, hidden_states):
        hidden_states = hidden_states.transpose(1, 2)

        hidden_states = self.conv(hidden_states)
        hidden_states = self.padding(hidden_states)
        hidden_states = self.activation(hidden_states)

        hidden_states = hidden_states.transpose(1, 2)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->Hubert
class HubertSamePadLayer(nn.Module):
    def __init__(self, num_conv_pos_embeddings):
        super().__init__()
        self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0

    def forward(self, hidden_states):
        if self.num_pad_remove > 0:
            hidden_states = hidden_states[:, :, : -self.num_pad_remove]
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureExtractor with Wav2Vec2->Hubert
class HubertFeatureExtractor(nn.Module):
    """Construct the features from raw audio waveform"""

    def __init__(self, config):
        super().__init__()

        if config.feat_extract_norm == "group":
            conv_layers = [HubertGroupNormConvLayer(config, layer_id=0)] + [
                HubertNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1)
            ]
        elif config.feat_extract_norm == "layer":
            conv_layers = [HubertLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)]
        else:
            raise ValueError(
                f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
            )
        self.conv_layers = nn.ModuleList(conv_layers)

    def _freeze_parameters(self):
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, input_values):
        hidden_states = input_values[:, None]
        for conv_layer in self.conv_layers:
            hidden_states = conv_layer(hidden_states)

        return hidden_states


class HubertFeatureProjection(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps)
        self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
        self.dropout = nn.Dropout(config.feat_proj_dropout)

    def forward(self, hidden_states):
        # non-projected hidden states are needed for quantization
        hidden_states = self.layer_norm(hidden_states)
        hidden_states = self.projection(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Hubert
class HubertAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        assert (
            self.head_dim * num_heads == self.embed_dim
        ), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {num_heads})."
        self.scaling = self.head_dim ** -0.5
        self.is_decoder = is_decoder

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None
        bsz, tgt_len, embed_dim = hidden_states.size()

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scaling
        # get key, value proj
        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            # cross_attentions
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        else:
            # self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_states, value_states)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        src_len = key_states.size(1)
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
            )

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        if layer_head_mask is not None:
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
                )
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if output_attentions:
            # this operation is a bit awkward, but it's required to
            # make sure that attn_weights keeps its gradient.
            # In order to do so, attn_weights have to be reshaped
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
        else:
            attn_weights_reshaped = None

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

        attn_output = torch.bmm(attn_probs, value_states)

        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
            )

        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2)
        attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped, past_key_value


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->Hubert
class HubertFeedForward(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.intermediate_dropout = nn.Dropout(config.activation_dropout)

        self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

        self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.output_dropout = nn.Dropout(config.hidden_dropout)

    def forward(self, hidden_states):
        hidden_states = self.intermediate_dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        hidden_states = self.intermediate_dropout(hidden_states)

        hidden_states = self.output_dense(hidden_states)
        hidden_states = self.output_dropout(hidden_states)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->Hubert
class HubertEncoderLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.attention = HubertAttention(
            embed_dim=config.hidden_size,
            num_heads=config.num_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=False,
        )
        self.dropout = nn.Dropout(config.hidden_dropout)
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.feed_forward = HubertFeedForward(config)
        self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states, attention_mask=None, output_attentions=False):
        attn_residual = hidden_states
        hidden_states, attn_weights, _ = self.attention(
            hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
        )
        hidden_states = self.dropout(hidden_states)
        hidden_states = attn_residual + hidden_states

        hidden_states = self.layer_norm(hidden_states)
        hidden_states = hidden_states + self.feed_forward(hidden_states)
        hidden_states = self.final_layer_norm(hidden_states)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->Hubert
class HubertEncoderLayerStableLayerNorm(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.attention = HubertAttention(
            embed_dim=config.hidden_size,
            num_heads=config.num_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=False,
        )
        self.dropout = nn.Dropout(config.hidden_dropout)
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.feed_forward = HubertFeedForward(config)
        self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states, attention_mask=None, output_attentions=False):
        attn_residual = hidden_states
        hidden_states = self.layer_norm(hidden_states)
        hidden_states, attn_weights, _ = self.attention(
            hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
        )
        hidden_states = self.dropout(hidden_states)
        hidden_states = attn_residual + hidden_states
        hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->Hubert
class HubertEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.pos_conv_embed = HubertPositionalConvEmbedding(config)
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout)
        self.layers = nn.ModuleList([HubertEncoderLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        if attention_mask is not None:
            # make sure padded tokens output 0
            hidden_states[~attention_mask] = 0.0

            # extend attention_mask
            attention_mask = (1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)) * -10000.0
            attention_mask = attention_mask.expand(
                attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
            )

        position_embeddings = self.pos_conv_embed(hidden_states)
        hidden_states = hidden_states + position_embeddings
        hidden_states = self.layer_norm(hidden_states)
        hidden_states = self.dropout(hidden_states)

        deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()

        for layer in self.layers:
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = np.random.uniform(0, 1)

            skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
            if not skip_the_layer or deepspeed_zero3_is_enabled:
                # under deepspeed zero3 all gpus must run in sync
                if getattr(self.config, "gradient_checkpointing", False) and self.training:
                    # create gradient checkpointing function
                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            return module(*inputs, output_attentions)

                        return custom_forward

                    layer_outputs = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(layer),
                        hidden_states,
                        attention_mask,
                    )
                else:
                    layer_outputs = layer(
                        hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
                    )
                hidden_states = layer_outputs[0]

            if skip_the_layer:
                layer_outputs = (None, None)

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderStableLayerNorm with Wav2Vec2->Hubert
class HubertEncoderStableLayerNorm(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.pos_conv_embed = HubertPositionalConvEmbedding(config)
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout)
        self.layers = nn.ModuleList(
            [HubertEncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)]
        )

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        if attention_mask is not None:
            # make sure padded tokens are not attended to
            hidden_states[~attention_mask] = 0

            # extend attention_mask
            attention_mask = (1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)) * -10000.0
            attention_mask = attention_mask.expand(
                attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
            )

        position_embeddings = self.pos_conv_embed(hidden_states)
        hidden_states = hidden_states + position_embeddings
        hidden_states = self.dropout(hidden_states)

        deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()

        for layer in self.layers:
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = np.random.uniform(0, 1)

            skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
            if not skip_the_layer or deepspeed_zero3_is_enabled:
                # under deepspeed zero3 all gpus must run in sync
                # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication
                if getattr(self.config, "gradient_checkpointing", False) and self.training:
                    # create gradient checkpointing function
                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            return module(*inputs, output_attentions)

                        return custom_forward

                    layer_outputs = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(layer),
                        hidden_states,
                        attention_mask,
                    )
                else:
                    layer_outputs = layer(
                        hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
                    )
                hidden_states = layer_outputs[0]

            if skip_the_layer:
                layer_outputs = (None, None)

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        hidden_states = self.layer_norm(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class HubertPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = HubertConfig
    base_model_prefix = "hubert"
    _keys_to_ignore_on_load_missing = [r"position_ids"]

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, nn.Conv1d):
            if is_deepspeed_zero3_enabled():
                import deepspeed

                if hasattr(module, "weight_v") and hasattr(module, "weight_g"):
                    with deepspeed.zero.GatheredParameters([module.weight_v, module.weight_g], modifier_rank=0):
                        nn.init.kaiming_normal_(module.weight.data)
                else:
                    with deepspeed.zero.GatheredParameters(module.weight, modifier_rank=0):
                        nn.init.kaiming_normal_(module.weight.data)
            else:
                nn.init.kaiming_normal_(module.weight.data)

        if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None:
            module.bias.data.zero_()

    def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
        """
        Computes the output length of the convolutional layers
        """

        def _conv_out_length(input_length, kernel_size, stride):
            # 1D convolutional layer output length formula taken
            # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
            return (input_length - kernel_size) // stride + 1

        for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
            input_lengths = _conv_out_length(input_lengths, kernel_size, stride)

        return input_lengths

    def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor):
        output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
        batch_size = attention_mask.shape[0]

        attention_mask = torch.zeros(
            (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
        )
        # these two operations makes sure that all values before the output lengths idxs are attended to
        attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
        attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
        return attention_mask


HUBERT_START_DOCSTRING = r"""
    Hubert was proposed in `HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units
    <https://arxiv.org/abs/2106.07447>`__ by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia,
    Ruslan Salakhutdinov, Abdelrahman Mohamed.

    This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
    methods the library implements for all its model (such as downloading or saving etc.).

    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config (:class:`~transformers.HubertConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.
"""


HUBERT_INPUTS_DOCSTRING = r"""
    Args:
        input_values (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`):
            Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
            into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
            soundfile`). To prepare the array into `input_values`, the :class:`~transformers.Wav2Vec2Processor` should
            be used for padding and conversion into a tensor of type `torch.FloatTensor`. See
            :meth:`transformers.Wav2Vec2Processor.__call__` for details.
        attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Mask to avoid performing convolution and attention on padding token indices. Mask values selected in ``[0,
            1]``:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            `What are attention masks? <../glossary.html#attention-mask>`__

            .. warning::
                :obj:`attention_mask` should only be passed if the corresponding processor has
                ``config.return_attention_mask == True``. For all models whose processor has
                ``config.return_attention_mask == False``, such as `hubert-base
                <https://huggingface.co/facebook/hubert-base-ls960>`__, :obj:`attention_mask` should **not** be passed
                to avoid degraded performance when doing batched inference. For such models :obj:`input_values` should
                simply be padded with 0 and passed without :obj:`attention_mask`. Be aware that these models also yield
                slightly different results depending on whether :obj:`input_values` is padded or not.

        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""


[docs]@add_start_docstrings( "The bare Hubert Model transformer outputting raw hidden-states without any specific head on top.", HUBERT_START_DOCSTRING, ) class HubertModel(HubertPreTrainedModel): def __init__(self, config: HubertConfig): super().__init__(config) self.config = config self.feature_extractor = HubertFeatureExtractor(config) self.feature_projection = HubertFeatureProjection(config) self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) if config.do_stable_layer_norm: self.encoder = HubertEncoderStableLayerNorm(config) else: self.encoder = HubertEncoder(config) self.init_weights() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to `SpecAugment <https://arxiv.org/abs/1904.08779>`__ . """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, device=hidden_states.device, attention_mask=attention_mask, min_masks=2, ) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, device=hidden_states.device, attention_mask=attention_mask, ) hidden_states[mask_feature_indices[:, None].expand(-1, sequence_length, -1)] = 0 return hidden_states
[docs] @add_start_docstrings_to_model_forward(HUBERT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values, attention_mask=None, mask_time_indices=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): """ Returns: Example:: >>> from transformers import Wav2Vec2Processor, HubertModel >>> from datasets import load_dataset >>> import soundfile as sf >>> processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft") >>> model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor(ds["speech"][0], return_tensors="pt").input_values # Batch size 1 >>> hidden_states = model(input_values).last_hidden_state """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask) hidden_states = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if not return_dict: return (hidden_states,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
[docs]@add_start_docstrings( """Hubert Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC). """, HUBERT_START_DOCSTRING, ) class HubertForCTC(HubertPreTrainedModel): def __init__(self, config): super().__init__(config) self.hubert = HubertModel(config) self.dropout = nn.Dropout(config.final_dropout) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size) self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature extractor so that its parameter will not be updated during training. """ self.hubert.feature_extractor._freeze_parameters()
[docs] @add_start_docstrings_to_model_forward(HUBERT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values, attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_length)`, `optional`): Labels for connectionist temporal classification. Note that ``target_length`` has to be smaller or equal to the sequence length of the output logits. Indices are selected in ``[-100, 0, ..., config.vocab_size - 1]``. All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size - 1]``. Returns: Example:: >>> import torch >>> from transformers import Wav2Vec2Processor, HubertForCTC >>> from datasets import load_dataset >>> import soundfile as sf >>> processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft") >>> model = HubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor(ds["speech"][0], return_tensors="pt").input_values # Batch size 1 >>> logits = model(input_values).logits >>> predicted_ids = torch.argmax(logits, dim=-1) >>> transcription = processor.decode(predicted_ids[0]) >>> # compute loss >>> target_transcription = "A MAN SAID TO THE UNIVERSE SIR I EXIST" >>> # wrap processor as target processor to encode labels >>> with processor.as_target_processor(): ... labels = processor(target_transcription, return_tensors="pt").input_ids >>> loss = model(input_values, labels=labels).loss """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.hubert( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions )
[docs]@add_start_docstrings( """ Hubert Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, HUBERT_START_DOCSTRING, ) class HubertForSequenceClassification(HubertPreTrainedModel): # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.__init__ with Wav2Vec2->Hubert, wav2vec2->hubert def __init__(self, config): super().__init__(config) self.hubert = HubertModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) self.init_weights() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_extractor with wav2vec2->hubert def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature extractor so that its parameters will not be updated during training. """ self.hubert.feature_extractor._freeze_parameters() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_base_model with wav2vec2->hubert def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.hubert.parameters(): param.requires_grad = False
[docs] @add_start_docstrings_to_model_forward(HUBERT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values, attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Example:: >>> import torch >>> from transformers import Wav2Vec2FeatureExtractor, HubertForSequenceClassification >>> from datasets import load_dataset >>> processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-ks") >>> model = HubertForSequenceClassification.from_pretrained("superb/hubert-base-superb-ks") >>> ds = load_dataset("anton-l/superb_dummy", "ks", split="test") >>> input_values = processor(ds["speech"][4], return_tensors="pt").input_values # Batch size 1 >>> logits = model(input_values).logits >>> predicted_class_ids = torch.argmax(logits, dim=-1) >>> # compute loss >>> target_label = "down" >>> labels = torch.tensor([model.config.label2id[target_label]]) >>> loss = model(input_values, labels=labels).loss """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.hubert( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[1] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )