Source code for transformers.models.deit.modeling_deit

# coding=utf-8
# Copyright 2021 Facebook AI Research (FAIR), Ross Wightman, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch DeiT model. """


import collections.abc
import math
from dataclasses import dataclass
from typing import Optional, Tuple

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss

from ...activations import ACT2FN
from ...file_utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
)
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, SequenceClassifierOutput
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import logging
from .configuration_deit import DeiTConfig


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "DeiTConfig"
_CHECKPOINT_FOR_DOC = "facebook/deit-base-distilled-patch16-224"

DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "facebook/deit-base-distilled-patch16-224",
    # See all DeiT models at https://huggingface.co/models?filter=deit
]


# Copied from transformers.models.vit.modeling_vit.to_2tuple
def to_2tuple(x):
    if isinstance(x, collections.abc.Iterable):
        return x
    return (x, x)


# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py


class DeiTEmbeddings(nn.Module):
    """
    Construct the CLS token, distillation token, position and patch embeddings.

    """

    def __init__(self, config):
        super().__init__()

        self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
        self.distillation_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
        self.patch_embeddings = PatchEmbeddings(
            image_size=config.image_size,
            patch_size=config.patch_size,
            num_channels=config.num_channels,
            embed_dim=config.hidden_size,
        )
        num_patches = self.patch_embeddings.num_patches
        self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 2, config.hidden_size))
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, pixel_values):
        batch_size = pixel_values.shape[0]
        embeddings = self.patch_embeddings(pixel_values)

        cls_tokens = self.cls_token.expand(batch_size, -1, -1)
        distillation_tokens = self.distillation_token.expand(batch_size, -1, -1)
        embeddings = torch.cat((cls_tokens, distillation_tokens, embeddings), dim=1)
        embeddings = embeddings + self.position_embeddings
        embeddings = self.dropout(embeddings)
        return embeddings


class PatchEmbeddings(nn.Module):
    """
    Image to Patch Embedding.

    """

    def __init__(self, image_size=224, patch_size=16, num_channels=3, embed_dim=768):
        super().__init__()
        image_size = to_2tuple(image_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, pixel_values):
        batch_size, num_channels, height, width = pixel_values.shape
        # FIXME look at relaxing size constraints
        if height != self.image_size[0] or width != self.image_size[1]:
            raise ValueError(
                f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
            )
        x = self.projection(pixel_values).flatten(2).transpose(1, 2)
        return x


# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->DeiT
class DeiTSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
                f"heads {config.num_attention_heads}."
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, head_mask=None, output_attentions=False):
        mixed_query_layer = self.query(hidden_states)

        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))
        query_layer = self.transpose_for_scores(mixed_query_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        return outputs


# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->DeiT
class DeiTSelfOutput(nn.Module):
    """
    The residual connection is defined in DeiTLayer instead of here (as is the case with other models), due to the
    layernorm applied before each block.
    """

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):

        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)

        return hidden_states


# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->DeiT
class DeiTAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.attention = DeiTSelfAttention(config)
        self.output = DeiTSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.attention.query = prune_linear_layer(self.attention.query, index)
        self.attention.key = prune_linear_layer(self.attention.key, index)
        self.attention.value = prune_linear_layer(self.attention.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
        self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(self, hidden_states, head_mask=None, output_attentions=False):
        self_outputs = self.attention(hidden_states, head_mask, output_attentions)

        attention_output = self.output(self_outputs[0], hidden_states)

        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->DeiT
class DeiTIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):

        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)

        return hidden_states


# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->DeiT
class DeiTOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)

        hidden_states = hidden_states + input_tensor

        return hidden_states


# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->DeiT
class DeiTLayer(nn.Module):
    """This corresponds to the Block class in the timm implementation."""

    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = DeiTAttention(config)
        self.intermediate = DeiTIntermediate(config)
        self.output = DeiTOutput(config)
        self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states, head_mask=None, output_attentions=False):
        self_attention_outputs = self.attention(
            self.layernorm_before(hidden_states),  # in DeiT, layernorm is applied before self-attention
            head_mask,
            output_attentions=output_attentions,
        )
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        # first residual connection
        hidden_states = attention_output + hidden_states

        # in DeiT, layernorm is also applied after self-attention
        layer_output = self.layernorm_after(hidden_states)

        # TODO feedforward chunking not working for now
        # layer_output = apply_chunking_to_forward(
        #     self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, layer_output
        # )

        layer_output = self.intermediate(layer_output)

        # second residual connection is done here
        layer_output = self.output(layer_output, hidden_states)

        outputs = (layer_output,) + outputs

        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output)
        return layer_output


# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->DeiT
class DeiTEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([DeiTLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(
        self,
        hidden_states,
        head_mask=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None

            if getattr(self.config, "gradient_checkpointing", False) and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    layer_head_mask,
                )
            else:
                layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


# Copied from transformers.models.vit.modeling_vit.ViTPreTrainedModel with ViT->DeiT all-casing
class DeiTPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = DeiTConfig
    base_model_prefix = "deit"

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


DEIT_START_DOCSTRING = r"""
    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config (:class:`~transformers.DeiTConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.
"""

DEIT_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using :class:`~transformers.DeiTFeatureExtractor`. See
            :meth:`transformers.DeiTFeatureExtractor.__call__` for details.

        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""


[docs]@add_start_docstrings( "The bare DeiT Model transformer outputting raw hidden-states without any specific head on top.", DEIT_START_DOCSTRING, ) class DeiTModel(DeiTPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = DeiTEmbeddings(config) self.encoder = DeiTEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = DeiTPooler(config) if add_pooling_layer else None self.init_weights() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads)
[docs] @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: Examples:: >>> from transformers import DeiTFeatureExtractor, DeiTModel >>> from PIL import Image >>> import requests >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> image = Image.open(requests.get(url, stream=True).raw) >>> feature_extractor = DeiTFeatureExtractor.from_pretrained('facebook/deit-base-distilled-patch16-224') >>> model = DeiTModel.from_pretrained('facebook/deit-base-distilled-patch16-224', add_pooling_layer=False) >>> inputs = feature_extractor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
# Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->DeiT class DeiTPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output
[docs]@add_start_docstrings( """ DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. """, DEIT_START_DOCSTRING, ) class DeiTForImageClassification(DeiTPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.deit = DeiTModel(config, add_pooling_layer=False) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() self.init_weights()
[docs] @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values=None, head_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the image classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples:: >>> from transformers import DeiTFeatureExtractor, DeiTForImageClassification >>> from PIL import Image >>> import requests >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> image = Image.open(requests.get(url, stream=True).raw) >>> # note: we are loading a DeiTForImageClassificationWithTeacher from the hub here, >>> # so the head will be randomly initialized, hence the predictions will be random >>> feature_extractor = DeiTFeatureExtractor.from_pretrained('facebook/deit-base-distilled-patch16-224') >>> model = DeiTForImageClassification.from_pretrained('facebook/deit-base-distilled-patch16-224') >>> inputs = feature_extractor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output[:, 0, :]) # we don't use the distillation token loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
@dataclass class DeiTForImageClassificationWithTeacherOutput(ModelOutput): """ Output type of :class:`~transformers.DeiTForImageClassificationWithTeacher`. Args: logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): Prediction scores as the average of the cls_logits and distillation logits. cls_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the class token). distillation_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the distillation token). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: torch.FloatTensor = None cls_logits: torch.FloatTensor = None distillation_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
[docs]@add_start_docstrings( """ DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet. .. warning:: This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported. """, DEIT_START_DOCSTRING, ) class DeiTForImageClassificationWithTeacher(DeiTPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.deit = DeiTModel(config, add_pooling_layer=False) # Classifier heads self.cls_classifier = ( nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() ) self.distillation_classifier = ( nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() ) self.init_weights()
[docs] @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DeiTForImageClassificationWithTeacherOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): """ Returns: Examples:: >>> from transformers import DeiTFeatureExtractor, DeiTForImageClassificationWithTeacher >>> from PIL import Image >>> import requests >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> image = Image.open(requests.get(url, stream=True).raw) >>> feature_extractor = DeiTFeatureExtractor.from_pretrained('facebook/deit-base-distilled-patch16-224') >>> model = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224') >>> inputs = feature_extractor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] cls_logits = self.cls_classifier(sequence_output[:, 0, :]) distillation_logits = self.distillation_classifier(sequence_output[:, 1, :]) # during inference, return the average of both classifier predictions logits = (cls_logits + distillation_logits) / 2 if not return_dict: output = (logits, cls_logits, distillation_logits) + outputs[2:] return output return DeiTForImageClassificationWithTeacherOutput( logits=logits, cls_logits=cls_logits, distillation_logits=distillation_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )