Source code for transformers.pipelines

# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import csv
import json
import os
import pickle
import sys
import uuid
import warnings
from abc import ABC, abstractmethod
from collections.abc import Iterable
from contextlib import contextmanager
from os.path import abspath, exists
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
from uuid import UUID

import numpy as np

from .configuration_utils import PretrainedConfig
from .data import SquadExample, SquadFeatures, squad_convert_examples_to_features
from .file_utils import add_end_docstrings, is_tf_available, is_torch_available, requires_pandas
from .modelcard import ModelCard
from .models.auto.configuration_auto import AutoConfig
from .models.auto.tokenization_auto import AutoTokenizer
from .models.bert.tokenization_bert import BasicTokenizer
from .tokenization_utils import PreTrainedTokenizer
from .tokenization_utils_base import PaddingStrategy
from .utils import logging


if is_tf_available():
    import tensorflow as tf

    from .models.auto.modeling_tf_auto import (
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
        TF_MODEL_WITH_LM_HEAD_MAPPING,
        TFAutoModel,
        TFAutoModelForCausalLM,
        TFAutoModelForMaskedLM,
        TFAutoModelForQuestionAnswering,
        TFAutoModelForSeq2SeqLM,
        TFAutoModelForSequenceClassification,
        TFAutoModelForTokenClassification,
    )

if is_torch_available():
    import torch

    from .models.auto.modeling_auto import (
        MODEL_FOR_MASKED_LM_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
        AutoModel,
        AutoModelForCausalLM,
        AutoModelForMaskedLM,
        AutoModelForQuestionAnswering,
        AutoModelForSeq2SeqLM,
        AutoModelForSequenceClassification,
        AutoModelForTableQuestionAnswering,
        AutoModelForTokenClassification,
    )

if TYPE_CHECKING:
    from .modeling_tf_utils import TFPreTrainedModel
    from .modeling_utils import PreTrainedModel


logger = logging.get_logger(__name__)


[docs]def get_framework(model, revision: Optional[str] = None): """ Select framework (TensorFlow or PyTorch) to use. Args: model (:obj:`str`, :class:`~transformers.PreTrainedModel` or :class:`~transformers.TFPreTrainedModel`): If both frameworks are installed, picks the one corresponding to the model passed (either a model class or the model name). If no specific model is provided, defaults to using PyTorch. """ if not is_tf_available() and not is_torch_available(): raise RuntimeError( "At least one of TensorFlow 2.0 or PyTorch should be installed. " "To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ " "To install PyTorch, read the instructions at https://pytorch.org/." ) if isinstance(model, str): if is_torch_available() and not is_tf_available(): model = AutoModel.from_pretrained(model, revision=revision) elif is_tf_available() and not is_torch_available(): model = TFAutoModel.from_pretrained(model, revision=revision) else: try: model = AutoModel.from_pretrained(model, revision=revision) except OSError: model = TFAutoModel.from_pretrained(model, revision=revision) framework = "tf" if model.__class__.__name__.startswith("TF") else "pt" return framework
def get_default_model(targeted_task: Dict, framework: Optional[str], task_options: Optional[Any]) -> str: """ Select a default model to use for a given task. Defaults to pytorch if ambiguous. Args: targeted_task (:obj:`Dict` ): Dictionary representing the given task, that should contain default models framework (:obj:`str`, None) "pt", "tf" or None, representing a specific framework if it was specified, or None if we don't know yet. task_options (:obj:`Any`, None) Any further value required by the task to get fully specified, for instance (SRC, TGT) languages for translation task. Returns :obj:`str` The model string representing the default model for this pipeline """ if is_torch_available() and not is_tf_available(): framework = "pt" elif is_tf_available() and not is_torch_available(): framework = "tf" defaults = targeted_task["default"] if task_options: if task_options not in defaults: raise ValueError("The task does not provide any default models for options {}".format(task_options)) default_models = defaults[task_options]["model"] elif "model" in defaults: default_models = targeted_task["default"]["model"] else: # XXX This error message needs to be updated to be more generic if more tasks are going to become # parametrized raise ValueError('The task defaults can\'t be correctly selected. You probably meant "translation_XX_to_YY"') if framework is None: framework = "pt" return default_models[framework]
[docs]class PipelineException(Exception): """ Raised by a :class:`~transformers.Pipeline` when handling __call__. Args: task (:obj:`str`): The task of the pipeline. model (:obj:`str`): The model used by the pipeline. reason (:obj:`str`): The error message to display. """ def __init__(self, task: str, model: str, reason: str): super().__init__(reason) self.task = task self.model = model
[docs]class ArgumentHandler(ABC): """ Base interface for handling arguments for each :class:`~transformers.pipelines.Pipeline`. """ @abstractmethod def __call__(self, *args, **kwargs): raise NotImplementedError()
[docs]class PipelineDataFormat: """ Base class for all the pipeline supported data format both for reading and writing. Supported data formats currently includes: - JSON - CSV - stdin/stdout (pipe) :obj:`PipelineDataFormat` also includes some utilities to work with multi-columns like mapping from datasets columns to pipelines keyword arguments through the :obj:`dataset_kwarg_1=dataset_column_1` format. Args: output_path (:obj:`str`, `optional`): Where to save the outgoing data. input_path (:obj:`str`, `optional`): Where to look for the input data. column (:obj:`str`, `optional`): The column to read. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to overwrite the :obj:`output_path`. """ SUPPORTED_FORMATS = ["json", "csv", "pipe"] def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite: bool = False, ): self.output_path = output_path self.input_path = input_path self.column = column.split(",") if column is not None else [""] self.is_multi_columns = len(self.column) > 1 if self.is_multi_columns: self.column = [tuple(c.split("=")) if "=" in c else (c, c) for c in self.column] if output_path is not None and not overwrite: if exists(abspath(self.output_path)): raise OSError("{} already exists on disk".format(self.output_path)) if input_path is not None: if not exists(abspath(self.input_path)): raise OSError("{} doesnt exist on disk".format(self.input_path)) @abstractmethod def __iter__(self): raise NotImplementedError()
[docs] @abstractmethod def save(self, data: Union[dict, List[dict]]): """ Save the provided data object with the representation for the current :class:`~transformers.pipelines.PipelineDataFormat`. Args: data (:obj:`dict` or list of :obj:`dict`): The data to store. """ raise NotImplementedError()
[docs] def save_binary(self, data: Union[dict, List[dict]]) -> str: """ Save the provided data object as a pickle-formatted binary data on the disk. Args: data (:obj:`dict` or list of :obj:`dict`): The data to store. Returns: :obj:`str`: Path where the data has been saved. """ path, _ = os.path.splitext(self.output_path) binary_path = os.path.extsep.join((path, "pickle")) with open(binary_path, "wb+") as f_output: pickle.dump(data, f_output) return binary_path
[docs] @staticmethod def from_str( format: str, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ) -> "PipelineDataFormat": """ Creates an instance of the right subclass of :class:`~transformers.pipelines.PipelineDataFormat` depending on :obj:`format`. Args: format: (:obj:`str`): The format of the desired pipeline. Acceptable values are :obj:`"json"`, :obj:`"csv"` or :obj:`"pipe"`. output_path (:obj:`str`, `optional`): Where to save the outgoing data. input_path (:obj:`str`, `optional`): Where to look for the input data. column (:obj:`str`, `optional`): The column to read. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to overwrite the :obj:`output_path`. Returns: :class:`~transformers.pipelines.PipelineDataFormat`: The proper data format. """ if format == "json": return JsonPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) elif format == "csv": return CsvPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) elif format == "pipe": return PipedPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) else: raise KeyError("Unknown reader {} (Available reader are json/csv/pipe)".format(format))
[docs]class CsvPipelineDataFormat(PipelineDataFormat): """ Support for pipelines using CSV data format. Args: output_path (:obj:`str`, `optional`): Where to save the outgoing data. input_path (:obj:`str`, `optional`): Where to look for the input data. column (:obj:`str`, `optional`): The column to read. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to overwrite the :obj:`output_path`. """ def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ): super().__init__(output_path, input_path, column, overwrite=overwrite) def __iter__(self): with open(self.input_path, "r") as f: reader = csv.DictReader(f) for row in reader: if self.is_multi_columns: yield {k: row[c] for k, c in self.column} else: yield row[self.column[0]]
[docs] def save(self, data: List[dict]): """ Save the provided data object with the representation for the current :class:`~transformers.pipelines.PipelineDataFormat`. Args: data (:obj:`List[dict]`): The data to store. """ with open(self.output_path, "w") as f: if len(data) > 0: writer = csv.DictWriter(f, list(data[0].keys())) writer.writeheader() writer.writerows(data)
[docs]class JsonPipelineDataFormat(PipelineDataFormat): """ Support for pipelines using JSON file format. Args: output_path (:obj:`str`, `optional`): Where to save the outgoing data. input_path (:obj:`str`, `optional`): Where to look for the input data. column (:obj:`str`, `optional`): The column to read. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to overwrite the :obj:`output_path`. """ def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ): super().__init__(output_path, input_path, column, overwrite=overwrite) with open(input_path, "r") as f: self._entries = json.load(f) def __iter__(self): for entry in self._entries: if self.is_multi_columns: yield {k: entry[c] for k, c in self.column} else: yield entry[self.column[0]]
[docs] def save(self, data: dict): """ Save the provided data object in a json file. Args: data (:obj:`dict`): The data to store. """ with open(self.output_path, "w") as f: json.dump(data, f)
[docs]class PipedPipelineDataFormat(PipelineDataFormat): """ Read data from piped input to the python process. For multi columns data, columns should separated by \t If columns are provided, then the output will be a dictionary with {column_x: value_x} Args: output_path (:obj:`str`, `optional`): Where to save the outgoing data. input_path (:obj:`str`, `optional`): Where to look for the input data. column (:obj:`str`, `optional`): The column to read. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to overwrite the :obj:`output_path`. """ def __iter__(self): for line in sys.stdin: # Split for multi-columns if "\t" in line: line = line.split("\t") if self.column: # Dictionary to map arguments yield {kwargs: l for (kwargs, _), l in zip(self.column, line)} else: yield tuple(line) # No dictionary to map arguments else: yield line
[docs] def save(self, data: dict): """ Print the data. Args: data (:obj:`dict`): The data to store. """ print(data)
[docs] def save_binary(self, data: Union[dict, List[dict]]) -> str: if self.output_path is None: raise KeyError( "When using piped input on pipeline outputting large object requires an output file path. " "Please provide such output path through --output argument." ) return super().save_binary(data)
class _ScikitCompat(ABC): """ Interface layer for the Scikit and Keras compatibility. """ @abstractmethod def transform(self, X): raise NotImplementedError() @abstractmethod def predict(self, X): raise NotImplementedError() PIPELINE_INIT_ARGS = r""" Arguments: model (:obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from :class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel` for TensorFlow. tokenizer (:obj:`~transformers.PreTrainedTokenizer`): The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from :class:`~transformers.PreTrainedTokenizer`. modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`): Model card attributed to the model for this pipeline. framework (:obj:`str`, `optional`): The framework to use, either :obj:`"pt"` for PyTorch or :obj:`"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the :obj:`model`, or to PyTorch if no model is provided. task (:obj:`str`, defaults to :obj:`""`): A task-identifier for the pipeline. args_parser (:class:`~transformers.pipelines.ArgumentHandler`, `optional`): Reference to the object in charge of parsing supplied pipeline parameters. device (:obj:`int`, `optional`, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. binary_output (:obj:`bool`, `optional`, defaults to :obj:`False`): Flag indicating if the output the pipeline should happen in a binary format (i.e., pickle) or as raw text. """
[docs]@add_end_docstrings(PIPELINE_INIT_ARGS) class Pipeline(_ScikitCompat): """ The Pipeline class is the class from which all pipelines inherit. Refer to this class for methods shared across different pipelines. Base class implementing pipelined operations. Pipeline workflow is defined as a sequence of the following operations: Input -> Tokenization -> Model Inference -> Post-Processing (task dependent) -> Output Pipeline supports running on CPU or GPU through the device argument (see below). Some pipeline, like for instance :class:`~transformers.FeatureExtractionPipeline` (:obj:`'feature-extraction'` ) output large tensor object as nested-lists. In order to avoid dumping such large structure as textual data we provide the :obj:`binary_output` constructor argument. If set to :obj:`True`, the output will be stored in the pickle format. """ default_input_names = None def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, task: str = "", args_parser: ArgumentHandler = None, device: int = -1, binary_output: bool = False, ): if framework is None: framework = get_framework(model) self.task = task self.model = model self.tokenizer = tokenizer self.modelcard = modelcard self.framework = framework self.device = device if framework == "tf" else torch.device("cpu" if device < 0 else "cuda:{}".format(device)) self.binary_output = binary_output # Special handling if self.framework == "pt" and self.device.type == "cuda": self.model = self.model.to(self.device) # Update config with task specific parameters task_specific_params = self.model.config.task_specific_params if task_specific_params is not None and task in task_specific_params: self.model.config.update(task_specific_params.get(task))
[docs] def save_pretrained(self, save_directory: str): """ Save the pipeline's model and tokenizer. Args: save_directory (:obj:`str`): A path to the directory where to saved. It will be created if it doesn't exist. """ if os.path.isfile(save_directory): logger.error("Provided path ({}) should be a directory, not a file".format(save_directory)) return os.makedirs(save_directory, exist_ok=True) self.model.save_pretrained(save_directory) self.tokenizer.save_pretrained(save_directory) if self.modelcard is not None: self.modelcard.save_pretrained(save_directory)
[docs] def transform(self, X): """ Scikit / Keras interface to transformers' pipelines. This method will forward to __call__(). """ return self(X=X)
[docs] def predict(self, X): """ Scikit / Keras interface to transformers' pipelines. This method will forward to __call__(). """ return self(X=X)
[docs] @contextmanager def device_placement(self): """ Context Manager allowing tensor allocation on the user-specified device in framework agnostic way. Returns: Context manager Examples:: # Explicitly ask for tensor allocation on CUDA device :0 pipe = pipeline(..., device=0) with pipe.device_placement(): # Every framework specific tensor allocation will be done on the request device output = pipe(...) """ if self.framework == "tf": with tf.device("/CPU:0" if self.device == -1 else "/device:GPU:{}".format(self.device)): yield else: if self.device.type == "cuda": torch.cuda.set_device(self.device) yield
[docs] def ensure_tensor_on_device(self, **inputs): """ Ensure PyTorch tensors are on the specified device. Args: inputs (keyword arguments that should be :obj:`torch.Tensor`): The tensors to place on :obj:`self.device`. Return: :obj:`Dict[str, torch.Tensor]`: The same as :obj:`inputs` but on the proper device. """ return {name: tensor.to(self.device) for name, tensor in inputs.items()}
[docs] def check_model_type(self, supported_models: Union[List[str], dict]): """ Check if the model class is in supported by the pipeline. Args: supported_models (:obj:`List[str]` or :obj:`dict`): The list of models supported by the pipeline, or a dictionary with model class values. """ if not isinstance(supported_models, list): # Create from a model mapping supported_models = [item[1].__name__ for item in supported_models.items()] if self.model.__class__.__name__ not in supported_models: raise PipelineException( self.task, self.model.base_model_prefix, f"The model '{self.model.__class__.__name__}' is not supported for {self.task}. Supported models are {supported_models}", )
def _parse_and_tokenize(self, inputs, padding=True, add_special_tokens=True, **kwargs): """ Parse arguments and tokenize """ # Parse arguments inputs = self.tokenizer( inputs, add_special_tokens=add_special_tokens, return_tensors=self.framework, padding=padding, ) return inputs def __call__(self, *args, **kwargs): inputs = self._parse_and_tokenize(*args, **kwargs) return self._forward(inputs) def _forward(self, inputs, return_tensors=False): """ Internal framework specific forward dispatching Args: inputs: dict holding all the keyword arguments for required by the model forward method. return_tensors: Whether to return native framework (pt/tf) tensors rather than numpy array Returns: Numpy array """ # Encode for forward with self.device_placement(): if self.framework == "tf": # TODO trace model predictions = self.model(inputs.data, training=False)[0] else: with torch.no_grad(): inputs = self.ensure_tensor_on_device(**inputs) predictions = self.model(**inputs)[0].cpu() if return_tensors: return predictions else: return predictions.numpy()
# Can't use @add_end_docstrings(PIPELINE_INIT_ARGS) here because this one does not accept `binary_output`
[docs]class FeatureExtractionPipeline(Pipeline): """ Feature extraction pipeline using no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks. This feature extraction pipeline can currently be loaded from :func:`~transformers.pipeline` using the task identifier: :obj:`"feature-extraction"`. All models may be used for this pipeline. See a list of all models, including community-contributed models on `huggingface.co/models <https://huggingface.co/models>`__. Arguments: model (:obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from :class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel` for TensorFlow. tokenizer (:obj:`~transformers.PreTrainedTokenizer`): The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from :class:`~transformers.PreTrainedTokenizer`. modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`): Model card attributed to the model for this pipeline. framework (:obj:`str`, `optional`): The framework to use, either :obj:`"pt"` for PyTorch or :obj:`"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the :obj:`model`, or to PyTorch if no model is provided. task (:obj:`str`, defaults to :obj:`""`): A task-identifier for the pipeline. args_parser (:class:`~transformers.pipelines.ArgumentHandler`, `optional`): Reference to the object in charge of parsing supplied pipeline parameters. device (:obj:`int`, `optional`, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. """ def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, args_parser: ArgumentHandler = None, device: int = -1, task: str = "", ): super().__init__( model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, args_parser=args_parser, device=device, binary_output=True, task=task, )
[docs] def __call__(self, *args, **kwargs): """ Extract the features of the input(s). Args: args (:obj:`str` or :obj:`List[str]`): One or several texts (or one list of texts) to get the features of. Return: A nested list of :obj:`float`: The features computed by the model. """ return super().__call__(*args, **kwargs).tolist()
[docs]@add_end_docstrings(PIPELINE_INIT_ARGS) class TextGenerationPipeline(Pipeline): """ Language generation pipeline using any :obj:`ModelWithLMHead`. This pipeline predicts the words that will follow a specified text prompt. This language generation pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"text-generation"`. The models that this pipeline can use are models that have been trained with an autoregressive language modeling objective, which includes the uni-directional models in the library (e.g. gpt2). See the list of available models on `huggingface.co/models <https://huggingface.co/models?filter=causal-lm>`__. """ # Prefix text to help Transformer-XL and XLNet with short prompts as proposed by Aman Rusia # in https://github.com/rusiaaman/XLNet-gen#methodology # and https://medium.com/@amanrusia/xlnet-speaks-comparison-to-gpt-2-ea1a4e9ba39e XL_PREFIX = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ ALLOWED_MODELS = [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "ReformerModelWithLMHead", "GPT2LMHeadModel", "OpenAIGPTLMHeadModel", "CTRLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", "TFGPT2LMHeadModel", "TFOpenAIGPTLMHeadModel", "TFCTRLLMHeadModel", ] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.check_model_type(self.ALLOWED_MODELS) # overriding _parse_and_tokenize to allow for unusual language-modeling tokenizer arguments def _parse_and_tokenize(self, inputs, padding=True, add_special_tokens=True, **kwargs): """ Parse arguments and tokenize """ # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: tokenizer_kwargs = {"add_space_before_punct_symbol": True} else: tokenizer_kwargs = {} inputs = self.tokenizer( inputs, add_special_tokens=add_special_tokens, return_tensors=self.framework, padding=padding, **tokenizer_kwargs, ) return inputs
[docs] def __call__( self, text_inputs, return_tensors=False, return_text=True, clean_up_tokenization_spaces=False, prefix=None, **generate_kwargs ): """ Complete the prompt(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): One or several prompts (or one list of prompts) to complete. return_tensors (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to include the tensors of predictions (as token indices) in the outputs. return_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to include the decoded texts in the outputs. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. prefix (:obj:`str`, `optional`): Prefix added to prompt. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Return: A list or a list of list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **generated_text** (:obj:`str`, present when ``return_text=True``) -- The generated text. - **generated_token_ids** (:obj:`torch.Tensor` or :obj:`tf.Tensor`, present when ``return_tensors=True``) -- The token ids of the generated text. """ if isinstance(text_inputs, str): text_inputs = [text_inputs] results = [] for prompt_text in text_inputs: # Manage correct placement of the tensors with self.device_placement(): prefix = prefix if prefix is not None else self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. prefix = self.XL_PREFIX if prefix: prefix_inputs = self._parse_and_tokenize(prefix, padding=False, add_special_tokens=False) # This impacts max_length and min_length argument that need adjusting. prefix_length = prefix_inputs["input_ids"].shape[-1] if generate_kwargs.get("max_length", None) is not None: generate_kwargs["max_length"] += prefix_length if generate_kwargs.get("min_length", None) is not None: generate_kwargs["min_length"] += prefix_length prefix = prefix or "" inputs = self._parse_and_tokenize(prefix + prompt_text, padding=False, add_special_tokens=False) # set input_ids to None to allow empty prompt if inputs["input_ids"].shape[-1] == 0: inputs["input_ids"] = None inputs["attention_mask"] = None if self.framework == "pt" and inputs["input_ids"] is not None: inputs = self.ensure_tensor_on_device(**inputs) input_ids = inputs["input_ids"] # Ensure that batch size = 1 (batch generation not allowed for now) assert ( input_ids is None or input_ids.shape[0] == 1 ), "Batch generation is currently not supported. See https://github.com/huggingface/transformers/issues/3021 for more information." output_sequences = self.model.generate(input_ids=input_ids, **generate_kwargs) # BS x SL result = [] for generated_sequence in output_sequences: if self.framework == "pt" and generated_sequence is not None: generated_sequence = generated_sequence.cpu() generated_sequence = generated_sequence.numpy().tolist() record = {} if return_tensors: record["generated_token_ids"] = generated_sequence if return_text: # Decode text text = self.tokenizer.decode( generated_sequence, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: prompt_length = 0 else: prompt_length = len( self.tokenizer.decode( input_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) ) record["generated_text"] = prompt_text + text[prompt_length:] result.append(record) results += [result] if len(results) == 1: return results[0] return results
[docs]@add_end_docstrings( PIPELINE_INIT_ARGS, r""" return_all_scores (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to return all prediction scores or just the one of the predicted class. """, ) class TextClassificationPipeline(Pipeline): """ Text classification pipeline using any :obj:`ModelForSequenceClassification`. See the `sequence classification examples <../task_summary.html#sequence-classification>`__ for more information. This text classification pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"sentiment-analysis"` (for classifying sequences according to positive or negative sentiments). If multiple classification labels are available (:obj:`model.config.num_labels >= 2`), the pipeline will run a softmax over the results. If there is a single label, the pipeline will run a sigmoid over the result. The models that this pipeline can use are models that have been fine-tuned on a sequence classification task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=text-classification>`__. """ def __init__(self, return_all_scores: bool = False, **kwargs): super().__init__(**kwargs) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) self.return_all_scores = return_all_scores
[docs] def __call__(self, *args, **kwargs): """ Classify the text(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): One or several texts (or one list of prompts) to classify. Return: A list or a list of list of :obj:`dict`: Each result comes as list of dictionaries with the following keys: - **label** (:obj:`str`) -- The label predicted. - **score** (:obj:`float`) -- The corresponding probability. If ``self.return_all_scores=True``, one such dictionary is returned per label. """ outputs = super().__call__(*args, **kwargs) if self.model.config.num_labels == 1: scores = 1.0 / (1.0 + np.exp(-outputs)) else: scores = np.exp(outputs) / np.exp(outputs).sum(-1, keepdims=True) if self.return_all_scores: return [ [{"label": self.model.config.id2label[i], "score": score.item()} for i, score in enumerate(item)] for item in scores ] else: return [ {"label": self.model.config.id2label[item.argmax()], "score": item.max().item()} for item in scores ]
[docs]class ZeroShotClassificationArgumentHandler(ArgumentHandler): """ Handles arguments for zero-shot for text classification by turning each possible label into an NLI premise/hypothesis pair. """ def _parse_labels(self, labels): if isinstance(labels, str): labels = [label.strip() for label in labels.split(",")] return labels def __call__(self, sequences, labels, hypothesis_template): if len(labels) == 0 or len(sequences) == 0: raise ValueError("You must include at least one label and at least one sequence.") if hypothesis_template.format(labels[0]) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(hypothesis_template) ) if isinstance(sequences, str): sequences = [sequences] labels = self._parse_labels(labels) sequence_pairs = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(label)] for label in labels]) return sequence_pairs
[docs]@add_end_docstrings(PIPELINE_INIT_ARGS) class ZeroShotClassificationPipeline(Pipeline): """ NLI-based zero-shot classification pipeline using a :obj:`ModelForSequenceClassification` trained on NLI (natural language inference) tasks. Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis pair and passed to the pretrained model. Then, the logit for `entailment` is taken as the logit for the candidate label being valid. Any NLI model can be used, but the id of the `entailment` label must be included in the model config's :attr:`~transformers.PretrainedConfig.label2id`. This NLI pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"zero-shot-classification"`. The models that this pipeline can use are models that have been fine-tuned on an NLI task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?search=nli>`__. """ def __init__(self, args_parser=ZeroShotClassificationArgumentHandler(), *args, **kwargs): super().__init__(*args, **kwargs) self._args_parser = args_parser if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def entailment_id(self): for label, ind in self.model.config.label2id.items(): if label.lower().startswith("entail"): return ind return -1 def _parse_and_tokenize( self, sequences, candidate_labels, hypothesis_template, padding=True, add_special_tokens=True, **kwargs ): """ Parse arguments and tokenize only_first so that hypothesis (label) is not truncated """ sequence_pairs = self._args_parser(sequences, candidate_labels, hypothesis_template) inputs = self.tokenizer( sequence_pairs, add_special_tokens=add_special_tokens, return_tensors=self.framework, padding=padding, truncation="only_first", ) return inputs
[docs] def __call__( self, sequences: Union[str, List[str]], candidate_labels, hypothesis_template="This example is {}.", multi_class=False, ): """ Classify the sequence(s) given as inputs. See the :obj:`~transformers.ZeroShotClassificationPipeline` documentation for more information. Args: sequences (:obj:`str` or :obj:`List[str]`): The sequence(s) to classify, will be truncated if the model input is too large. candidate_labels (:obj:`str` or :obj:`List[str]`): The set of possible class labels to classify each sequence into. Can be a single label, a string of comma-separated labels, or a list of labels. hypothesis_template (:obj:`str`, `optional`, defaults to :obj:`"This example is {}."`): The template used to turn each label into an NLI-style hypothesis. This template must include a {} or similar syntax for the candidate label to be inserted into the template. For example, the default template is :obj:`"This example is {}."` With the candidate label :obj:`"sports"`, this would be fed into the model like :obj:`"<cls> sequence to classify <sep> This example is sports . <sep>"`. The default template works well in many cases, but it may be worthwhile to experiment with different templates depending on the task setting. multi_class (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not multiple candidate labels can be true. If :obj:`False`, the scores are normalized such that the sum of the label likelihoods for each sequence is 1. If :obj:`True`, the labels are considered independent and probabilities are normalized for each candidate by doing a softmax of the entailment score vs. the contradiction score. Return: A :obj:`dict` or a list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **sequence** (:obj:`str`) -- The sequence for which this is the output. - **labels** (:obj:`List[str]`) -- The labels sorted by order of likelihood. - **scores** (:obj:`List[float]`) -- The probabilities for each of the labels. """ if sequences and isinstance(sequences, str): sequences = [sequences] outputs = super().__call__(sequences, candidate_labels, hypothesis_template) num_sequences = len(sequences) candidate_labels = self._args_parser._parse_labels(candidate_labels) reshaped_outputs = outputs.reshape((num_sequences, len(candidate_labels), -1)) if len(candidate_labels) == 1: multi_class = True if not multi_class: # softmax the "entailment" logits over all candidate labels entail_logits = reshaped_outputs[..., self.entailment_id] scores = np.exp(entail_logits) / np.exp(entail_logits).sum(-1, keepdims=True) else: # softmax over the entailment vs. contradiction dim for each label independently entailment_id = self.entailment_id contradiction_id = -1 if entailment_id == 0 else 0 entail_contr_logits = reshaped_outputs[..., [contradiction_id, entailment_id]] scores = np.exp(entail_contr_logits) / np.exp(entail_contr_logits).sum(-1, keepdims=True) scores = scores[..., 1] result = [] for iseq in range(num_sequences): top_inds = list(reversed(scores[iseq].argsort())) result.append( { "sequence": sequences if isinstance(sequences, str) else sequences[iseq], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[iseq][top_inds].tolist(), } ) if len(result) == 1: return result[0] return result
[docs]@add_end_docstrings( PIPELINE_INIT_ARGS, r""" top_k (:obj:`int`, defaults to 5): The number of predictions to return. """, ) class FillMaskPipeline(Pipeline): """ Masked language modeling prediction pipeline using any :obj:`ModelWithLMHead`. See the `masked language modeling examples <../task_summary.html#masked-language-modeling>`__ for more information. This mask filling pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"fill-mask"`. The models that this pipeline can use are models that have been trained with a masked language modeling objective, which includes the bi-directional models in the library. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=masked-lm>`__. .. note:: This pipeline only works for inputs with exactly one token masked. """ def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, args_parser: ArgumentHandler = None, device: int = -1, top_k=5, task: str = "", ): super().__init__( model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, args_parser=args_parser, device=device, binary_output=True, task=task, ) self.check_model_type(TF_MODEL_WITH_LM_HEAD_MAPPING if self.framework == "tf" else MODEL_FOR_MASKED_LM_MAPPING) self.top_k = top_k def ensure_exactly_one_mask_token(self, masked_index: np.ndarray): numel = np.prod(masked_index.shape) if numel > 1: raise PipelineException( "fill-mask", self.model.base_model_prefix, f"More than one mask_token ({self.tokenizer.mask_token}) is not supported", ) elif numel < 1: raise PipelineException( "fill-mask", self.model.base_model_prefix, f"No mask_token ({self.tokenizer.mask_token}) found on the input", )
[docs] def __call__(self, *args, targets=None, top_k: Optional[int] = None, **kwargs): """ Fill the masked token in the text(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): One or several texts (or one list of prompts) with masked tokens. targets (:obj:`str` or :obj:`List[str]`, `optional`): When passed, the model will return the scores for the passed token or tokens rather than the top k predictions in the entire vocabulary. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning). top_k (:obj:`int`, `optional`): When passed, overrides the number of predictions to return. Return: A list or a list of list of :obj:`dict`: Each result comes as list of dictionaries with the following keys: - **sequence** (:obj:`str`) -- The corresponding input with the mask token prediction. - **score** (:obj:`float`) -- The corresponding probability. - **token** (:obj:`int`) -- The predicted token id (to replace the masked one). - **token** (:obj:`str`) -- The predicted token (to replace the masked one). """ inputs = self._parse_and_tokenize(*args, **kwargs) outputs = self._forward(inputs, return_tensors=True) results = [] batch_size = outputs.shape[0] if self.framework == "tf" else outputs.size(0) if targets is not None: if len(targets) == 0 or len(targets[0]) == 0: raise ValueError("At least one target must be provided when passed.") if isinstance(targets, str): targets = [targets] targets_proc = [] for target in targets: target_enc = self.tokenizer.tokenize(target) if len(target_enc) > 1 or target_enc[0] == self.tokenizer.unk_token: logger.warning( "The specified target token `{}` does not exist in the model vocabulary. Replacing with `{}`.".format( target, target_enc[0] ) ) targets_proc.append(target_enc[0]) target_inds = np.array(self.tokenizer.convert_tokens_to_ids(targets_proc)) for i in range(batch_size): input_ids = inputs["input_ids"][i] result = [] if self.framework == "tf": masked_index = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() # Fill mask pipeline supports only one ${mask_token} per sample self.ensure_exactly_one_mask_token(masked_index) logits = outputs[i, masked_index.item(), :] probs = tf.nn.softmax(logits) if targets is None: topk = tf.math.top_k(probs, k=top_k if top_k is not None else self.top_k) values, predictions = topk.values.numpy(), topk.indices.numpy() else: values = tf.gather_nd(probs, tf.reshape(target_inds, (-1, 1))) sort_inds = tf.reverse(tf.argsort(values), [0]) values = tf.gather_nd(values, tf.reshape(sort_inds, (-1, 1))).numpy() predictions = target_inds[sort_inds.numpy()] else: masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False) # Fill mask pipeline supports only one ${mask_token} per sample self.ensure_exactly_one_mask_token(masked_index.numpy()) logits = outputs[i, masked_index.item(), :] probs = logits.softmax(dim=0) if targets is None: values, predictions = probs.topk(top_k if top_k is not None else self.top_k) else: values = probs[..., target_inds] sort_inds = list(reversed(values.argsort(dim=-1))) values = values[..., sort_inds] predictions = target_inds[sort_inds] for v, p in zip(values.tolist(), predictions.tolist()): tokens = input_ids.numpy() tokens[masked_index] = p # Filter padding out: tokens = tokens[np.where(tokens != self.tokenizer.pad_token_id)] result.append( { "sequence": self.tokenizer.decode(tokens), "score": v, "token": p, "token_str": self.tokenizer.convert_ids_to_tokens(p), } ) # Append results += [result] if len(results) == 1: return results[0] return results
class TokenClassificationArgumentHandler(ArgumentHandler): """ Handles arguments for token classification. """ def __call__(self, *args, **kwargs): if args is not None and len(args) > 0: inputs = list(args) batch_size = len(inputs) else: raise ValueError("At least one input is required.") offset_mapping = kwargs.get("offset_mapping") if offset_mapping: if isinstance(offset_mapping, list) and isinstance(offset_mapping[0], tuple): offset_mapping = [offset_mapping] if len(offset_mapping) != batch_size: raise ValueError("offset_mapping should have the same batch size as the input") return inputs, offset_mapping
[docs]@add_end_docstrings( PIPELINE_INIT_ARGS, r""" ignore_labels (:obj:`List[str]`, defaults to :obj:`["O"]`): A list of labels to ignore. grouped_entities (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to group the tokens corresponding to the same entity together in the predictions or not. """, ) class TokenClassificationPipeline(Pipeline): """ Named Entity Recognition pipeline using any :obj:`ModelForTokenClassification`. See the `named entity recognition examples <../task_summary.html#named-entity-recognition>`__ for more information. This token recognition pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"ner"` (for predicting the classes of tokens in a sequence: person, organisation, location or miscellaneous). The models that this pipeline can use are models that have been fine-tuned on a token classification task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=token-classification>`__. """ default_input_names = "sequences" def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, args_parser: ArgumentHandler = TokenClassificationArgumentHandler(), device: int = -1, binary_output: bool = False, ignore_labels=["O"], task: str = "", grouped_entities: bool = False, ignore_subwords: bool = False, ): super().__init__( model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, device=device, binary_output=binary_output, task=task, ) self.check_model_type( TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING ) self._basic_tokenizer = BasicTokenizer(do_lower_case=False) self._args_parser = args_parser self.ignore_labels = ignore_labels self.grouped_entities = grouped_entities self.ignore_subwords = ignore_subwords if self.ignore_subwords and not self.tokenizer.is_fast: raise ValueError( "Slow tokenizers cannot ignore subwords. Please set the `ignore_subwords` option" "to `False` or use a fast tokenizer." )
[docs] def __call__(self, inputs: Union[str, List[str]], **kwargs): """ Classify each token of the text(s) given as inputs. Args: inputs (:obj:`str` or :obj:`List[str]`): One or several texts (or one list of texts) for token classification. Return: A list or a list of list of :obj:`dict`: Each result comes as a list of dictionaries (one for each token in the corresponding input, or each entity if this pipeline was instantiated with :obj:`grouped_entities=True`) with the following keys: - **word** (:obj:`str`) -- The token/word classified. - **score** (:obj:`float`) -- The corresponding probability for :obj:`entity`. - **entity** (:obj:`str`) -- The entity predicted for that token/word (it is named `entity_group` when `grouped_entities` is set to True. - **index** (:obj:`int`, only present when ``self.grouped_entities=False``) -- The index of the corresponding token in the sentence. - **start** (:obj:`int`, `optional`) -- The index of the start of the corresponding entity in the sentence. Only exists if the offsets are available within the tokenizer - **end** (:obj:`int`, `optional`) -- The index of the end of the corresponding entity in the sentence. Only exists if the offsets are available within the tokenizer """ inputs, offset_mappings = self._args_parser(inputs, **kwargs) answers = [] for i, sentence in enumerate(inputs): # Manage correct placement of the tensors with self.device_placement(): tokens = self.tokenizer( sentence, return_attention_mask=False, return_tensors=self.framework, truncation=True, return_special_tokens_mask=True, return_offsets_mapping=self.tokenizer.is_fast, ) if self.tokenizer.is_fast: offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0] elif offset_mappings: offset_mapping = offset_mappings[i] else: offset_mapping = None special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0] # Forward if self.framework == "tf": entities = self.model(tokens.data)[0][0].numpy() input_ids = tokens["input_ids"].numpy()[0] else: with torch.no_grad(): tokens = self.ensure_tensor_on_device(**tokens) entities = self.model(**tokens)[0][0].cpu().numpy() input_ids = tokens["input_ids"].cpu().numpy()[0] score = np.exp(entities) / np.exp(entities).sum(-1, keepdims=True) labels_idx = score.argmax(axis=-1) entities = [] # Filter to labels not in `self.ignore_labels` # Filter special_tokens filtered_labels_idx = [ (idx, label_idx) for idx, label_idx in enumerate(labels_idx) if (self.model.config.id2label[label_idx] not in self.ignore_labels) and not special_tokens_mask[idx] ] for idx, label_idx in filtered_labels_idx: if offset_mapping is not None: start_ind, end_ind = offset_mapping[idx] word_ref = sentence[start_ind:end_ind] word = self.tokenizer.convert_ids_to_tokens([int(input_ids[idx])])[0] is_subword = len(word_ref) != len(word) if int(input_ids[idx]) == self.tokenizer.unk_token_id: word = word_ref is_subword = False else: word = self.tokenizer.convert_ids_to_tokens(int(input_ids[idx])) start_ind = None end_ind = None entity = { "word": word, "score": score[idx][label_idx].item(), "entity": self.model.config.id2label[label_idx], "index": idx, "start": start_ind, "end": end_ind, } if self.grouped_entities and self.ignore_subwords: entity["is_subword"] = is_subword entities += [entity] if self.grouped_entities: answers += [self.group_entities(entities)] # Append ungrouped entities else: answers += [entities] if len(answers) == 1: return answers[0] return answers
[docs] def group_sub_entities(self, entities: List[dict]) -> dict: """ Group together the adjacent tokens with the same entity predicted. Args: entities (:obj:`dict`): The entities predicted by the pipeline. """ # Get the first entity in the entity group entity = entities[0]["entity"].split("-")[-1] scores = np.nanmean([entity["score"] for entity in entities]) tokens = [entity["word"] for entity in entities] entity_group = { "entity_group": entity, "score": np.mean(scores), "word": self.tokenizer.convert_tokens_to_string(tokens), "start": entities[0]["start"], "end": entities[-1]["end"], } return entity_group
[docs] def group_entities(self, entities: List[dict]) -> List[dict]: """ Find and group together the adjacent tokens with the same entity predicted. Args: entities (:obj:`dict`): The entities predicted by the pipeline. """ entity_groups = [] entity_group_disagg = [] if entities: last_idx = entities[-1]["index"] for entity in entities: is_last_idx = entity["index"] == last_idx is_subword = self.ignore_subwords and entity["is_subword"] if not entity_group_disagg: entity_group_disagg += [entity] if is_last_idx: entity_groups += [self.group_sub_entities(entity_group_disagg)] continue # If the current entity is similar and adjacent to the previous entity, append it to the disaggregated entity group # The split is meant to account for the "B" and "I" suffixes # Shouldn't merge if both entities are B-type if ( ( entity["entity"].split("-")[-1] == entity_group_disagg[-1]["entity"].split("-")[-1] and entity["entity"].split("-")[0] != "B" ) and entity["index"] == entity_group_disagg[-1]["index"] + 1 ) or is_subword: # Modify subword type to be previous_type if is_subword: entity["entity"] = entity_group_disagg[-1]["entity"].split("-")[-1] entity["score"] = np.nan # set ignored scores to nan and use np.nanmean entity_group_disagg += [entity] # Group the entities at the last entity if is_last_idx: entity_groups += [self.group_sub_entities(entity_group_disagg)] # If the current entity is different from the previous entity, aggregate the disaggregated entity group else: entity_groups += [self.group_sub_entities(entity_group_disagg)] entity_group_disagg = [entity] # If it's the last entity, add it to the entity groups if is_last_idx: entity_groups += [self.group_sub_entities(entity_group_disagg)] return entity_groups
NerPipeline = TokenClassificationPipeline
[docs]class QuestionAnsweringArgumentHandler(ArgumentHandler): """ QuestionAnsweringPipeline requires the user to provide multiple arguments (i.e. question & context) to be mapped to internal :class:`~transformers.SquadExample`. QuestionAnsweringArgumentHandler manages all the possible to create a :class:`~transformers.SquadExample` from the command-line supplied arguments. """ def normalize(self, item): if isinstance(item, SquadExample): return item elif isinstance(item, dict): for k in ["question", "context"]: if k not in item: raise KeyError("You need to provide a dictionary with keys {question:..., context:...}") elif item[k] is None: raise ValueError("`{}` cannot be None".format(k)) elif isinstance(item[k], str) and len(item[k]) == 0: raise ValueError("`{}` cannot be empty".format(k)) return QuestionAnsweringPipeline.create_sample(**item) raise ValueError("{} argument needs to be of type (SquadExample, dict)".format(item)) def __call__(self, *args, **kwargs): # Detect where the actual inputs are if args is not None and len(args) > 0: if len(args) == 1: inputs = args[0] elif len(args) == 2 and {type(el) for el in args} == {str}: inputs = [{"question": args[0], "context": args[1]}] else: inputs = list(args) # Generic compatibility with sklearn and Keras # Batched data elif "X" in kwargs: inputs = kwargs["X"] elif "data" in kwargs: inputs = kwargs["data"] elif "question" in kwargs and "context" in kwargs: if isinstance(kwargs["question"], list) and isinstance(kwargs["context"], str): inputs = [{"question": Q, "context": kwargs["context"]} for Q in kwargs["question"]] elif isinstance(kwargs["question"], list) and isinstance(kwargs["context"], list): if len(kwargs["question"]) != len(kwargs["context"]): raise ValueError("Questions and contexts don't have the same lengths") inputs = [{"question": Q, "context": C} for Q, C in zip(kwargs["question"], kwargs["context"])] elif isinstance(kwargs["question"], str) and isinstance(kwargs["context"], str): inputs = [{"question": kwargs["question"], "context": kwargs["context"]}] else: raise ValueError("Arguments can't be understood") else: raise ValueError("Unknown arguments {}".format(kwargs)) # Normalize inputs if isinstance(inputs, dict): inputs = [inputs] elif isinstance(inputs, Iterable): # Copy to avoid overriding arguments inputs = [i for i in inputs] else: raise ValueError("Invalid arguments {}".format(inputs)) for i, item in enumerate(inputs): inputs[i] = self.normalize(item) return inputs
[docs]@add_end_docstrings(PIPELINE_INIT_ARGS) class QuestionAnsweringPipeline(Pipeline): """ Question Answering pipeline using any :obj:`ModelForQuestionAnswering`. See the `question answering examples <../task_summary.html#question-answering>`__ for more information. This question answering pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"question-answering"`. The models that this pipeline can use are models that have been fine-tuned on a question answering task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=question-answering>`__. """ default_input_names = "question,context" def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, device: int = -1, task: str = "", **kwargs ): super().__init__( model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, device=device, task=task, **kwargs, ) self._args_parser = QuestionAnsweringArgumentHandler() self.check_model_type( TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING if self.framework == "tf" else MODEL_FOR_QUESTION_ANSWERING_MAPPING )
[docs] @staticmethod def create_sample( question: Union[str, List[str]], context: Union[str, List[str]] ) -> Union[SquadExample, List[SquadExample]]: """ QuestionAnsweringPipeline leverages the :class:`~transformers.SquadExample` internally. This helper method encapsulate all the logic for converting question(s) and context(s) to :class:`~transformers.SquadExample`. We currently support extractive question answering. Arguments: question (:obj:`str` or :obj:`List[str]`): The question(s) asked. context (:obj:`str` or :obj:`List[str]`): The context(s) in which we will look for the answer. Returns: One or a list of :class:`~transformers.SquadExample`: The corresponding :class:`~transformers.SquadExample` grouping question and context. """ if isinstance(question, list): return [SquadExample(None, q, c, None, None, None) for q, c in zip(question, context)] else: return SquadExample(None, question, context, None, None, None)
[docs] def __call__(self, *args, **kwargs): """ Answer the question(s) given as inputs by using the context(s). Args: args (:class:`~transformers.SquadExample` or a list of :class:`~transformers.SquadExample`): One or several :class:`~transformers.SquadExample` containing the question and context. X (:class:`~transformers.SquadExample` or a list of :class:`~transformers.SquadExample`, `optional`): One or several :class:`~transformers.SquadExample` containing the question and context (will be treated the same way as if passed as the first positional argument). data (:class:`~transformers.SquadExample` or a list of :class:`~transformers.SquadExample`, `optional`): One or several :class:`~transformers.SquadExample` containing the question and context (will be treated the same way as if passed as the first positional argument). question (:obj:`str` or :obj:`List[str]`): One or several question(s) (must be used in conjunction with the :obj:`context` argument). context (:obj:`str` or :obj:`List[str]`): One or several context(s) associated with the question(s) (must be used in conjunction with the :obj:`question` argument). topk (:obj:`int`, `optional`, defaults to 1): The number of answers to return (will be chosen by order of likelihood). doc_stride (:obj:`int`, `optional`, defaults to 128): If the context is too long to fit with the question for the model, it will be split in several chunks with some overlap. This argument controls the size of that overlap. max_answer_len (:obj:`int`, `optional`, defaults to 15): The maximum length of predicted answers (e.g., only answers with a shorter length are considered). max_seq_len (:obj:`int`, `optional`, defaults to 384): The maximum length of the total sentence (context + question) after tokenization. The context will be split in several chunks (using :obj:`doc_stride`) if needed. max_question_len (:obj:`int`, `optional`, defaults to 64): The maximum length of the question after tokenization. It will be truncated if needed. handle_impossible_answer (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not we accept impossible as an answer. Return: A :obj:`dict` or a list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **score** (:obj:`float`) -- The probability associated to the answer. - **start** (:obj:`int`) -- The start index of the answer (in the tokenized version of the input). - **end** (:obj:`int`) -- The end index of the answer (in the tokenized version of the input). - **answer** (:obj:`str`) -- The answer to the question. """ # Set defaults values kwargs.setdefault("padding", "longest") kwargs.setdefault("topk", 1) kwargs.setdefault("doc_stride", 128) kwargs.setdefault("max_answer_len", 15) kwargs.setdefault("max_seq_len", 384) kwargs.setdefault("max_question_len", 64) kwargs.setdefault("handle_impossible_answer", False) if kwargs["topk"] < 1: raise ValueError("topk parameter should be >= 1 (got {})".format(kwargs["topk"])) if kwargs["max_answer_len"] < 1: raise ValueError("max_answer_len parameter should be >= 1 (got {})".format(kwargs["max_answer_len"])) # Convert inputs to features examples = self._args_parser(*args, **kwargs) if not self.tokenizer.is_fast: features_list = [ squad_convert_examples_to_features( examples=[example], tokenizer=self.tokenizer, max_seq_length=kwargs["max_seq_len"], doc_stride=kwargs["doc_stride"], max_query_length=kwargs["max_question_len"], padding_strategy=PaddingStrategy.MAX_LENGTH.value, is_training=False, tqdm_enabled=False, ) for example in examples ] else: features_list = [] for example in examples: # Define the side we want to truncate / pad and the text/pair sorting question_first = bool(self.tokenizer.padding_side == "right") encoded_inputs = self.tokenizer( text=example.question_text if question_first else example.context_text, text_pair=example.context_text if question_first else example.question_text, padding=kwargs["padding"], truncation="only_second" if question_first else "only_first", max_length=kwargs["max_seq_len"], stride=kwargs["doc_stride"], return_tensors="np", return_token_type_ids=True, return_overflowing_tokens=True, return_offsets_mapping=True, return_special_tokens_mask=True, ) # When the input is too long, it's converted in a batch of inputs with overflowing tokens # and a stride of overlap between the inputs. If a batch of inputs is given, a special output # "overflow_to_sample_mapping" indicate which member of the encoded batch belong to which original batch sample. # Here we tokenize examples one-by-one so we don't need to use "overflow_to_sample_mapping". # "num_span" is the number of output samples generated from the overflowing tokens. num_spans = len(encoded_inputs["input_ids"]) # p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer) # We put 0 on the tokens from the context and 1 everywhere else (question and special tokens) p_mask = np.asarray( [ [tok != 1 if question_first else 0 for tok in encoded_inputs.sequence_ids(span_id)] for span_id in range(num_spans) ] ) # keep the cls_token unmasked (some models use it to indicate unanswerable questions) if self.tokenizer.cls_token_id: cls_index = np.nonzero(encoded_inputs["input_ids"] == self.tokenizer.cls_token_id) p_mask[cls_index] = 0 features = [] for span_idx in range(num_spans): features.append( SquadFeatures( input_ids=encoded_inputs["input_ids"][span_idx], attention_mask=encoded_inputs["attention_mask"][span_idx], token_type_ids=encoded_inputs["token_type_ids"][span_idx], p_mask=p_mask[span_idx].tolist(), encoding=encoded_inputs[span_idx], # We don't use the rest of the values - and actually # for Fast tokenizer we could totally avoid using SquadFeatures and SquadExample cls_index=None, token_to_orig_map={}, example_index=0, unique_id=0, paragraph_len=0, token_is_max_context=0, tokens=[], start_position=0, end_position=0, is_impossible=False, qas_id=None, ) ) features_list.append(features) all_answers = [] for features, example in zip(features_list, examples): model_input_names = self.tokenizer.model_input_names + ["input_ids"] fw_args = {k: [feature.__dict__[k] for feature in features] for k in model_input_names} # Manage tensor allocation on correct device with self.device_placement(): if self.framework == "tf": fw_args = {k: tf.constant(v) for (k, v) in fw_args.items()} start, end = self.model(fw_args)[:2] start, end = start.numpy(), end.numpy() else: with torch.no_grad(): # Retrieve the score for the context tokens only (removing question tokens) fw_args = {k: torch.tensor(v, device=self.device) for (k, v) in fw_args.items()} # On Windows, the default int type in numpy is np.int32 so we get some non-long tensors. fw_args = {k: v.long() if v.dtype == torch.int32 else v for (k, v) in fw_args.items()} start, end = self.model(**fw_args)[:2] start, end = start.cpu().numpy(), end.cpu().numpy() min_null_score = 1000000 # large and positive answers = [] for (feature, start_, end_) in zip(features, start, end): # Ensure padded tokens & question tokens cannot belong to the set of candidate answers. undesired_tokens = np.abs(np.array(feature.p_mask) - 1) & feature.attention_mask # Generate mask undesired_tokens_mask = undesired_tokens == 0.0 # Make sure non-context indexes in the tensor cannot contribute to the softmax start_ = np.where(undesired_tokens_mask, -10000.0, start_) end_ = np.where(undesired_tokens_mask, -10000.0, end_) # Normalize logits and spans to retrieve the answer start_ = np.exp(start_ - np.log(np.sum(np.exp(start_), axis=-1, keepdims=True))) end_ = np.exp(end_ - np.log(np.sum(np.exp(end_), axis=-1, keepdims=True))) if kwargs["handle_impossible_answer"]: min_null_score = min(min_null_score, (start_[0] * end_[0]).item()) # Mask CLS start_[0] = end_[0] = 0.0 starts, ends, scores = self.decode(start_, end_, kwargs["topk"], kwargs["max_answer_len"]) if not self.tokenizer.is_fast: char_to_word = np.array(example.char_to_word_offset) # Convert the answer (tokens) back to the original text # Score: score from the model # Start: Index of the first character of the answer in the context string # End: Index of the character following the last character of the answer in the context string # Answer: Plain text of the answer answers += [ { "score": score.item(), "start": np.where(char_to_word == feature.token_to_orig_map[s])[0][0].item(), "end": np.where(char_to_word == feature.token_to_orig_map[e])[0][-1].item(), "answer": " ".join( example.doc_tokens[feature.token_to_orig_map[s] : feature.token_to_orig_map[e] + 1] ), } for s, e, score in zip(starts, ends, scores) ] else: # Convert the answer (tokens) back to the original text # Score: score from the model # Start: Index of the first character of the answer in the context string # End: Index of the character following the last character of the answer in the context string # Answer: Plain text of the answer question_first = bool(self.tokenizer.padding_side == "right") enc = feature.encoding # Sometimes the max probability token is in the middle of a word so: # - we start by finding the right word containing the token with `token_to_word` # - then we convert this word in a character span with `word_to_chars` answers += [ { "score": score.item(), "start": enc.word_to_chars( enc.token_to_word(s), sequence_index=1 if question_first else 0 )[0], "end": enc.word_to_chars(enc.token_to_word(e), sequence_index=1 if question_first else 0)[ 1 ], "answer": example.context_text[ enc.word_to_chars(enc.token_to_word(s), sequence_index=1 if question_first else 0)[ 0 ] : enc.word_to_chars(enc.token_to_word(e), sequence_index=1 if question_first else 0)[ 1 ] ], } for s, e, score in zip(starts, ends, scores) ] if kwargs["handle_impossible_answer"]: answers.append({"score": min_null_score, "start": 0, "end": 0, "answer": ""}) answers = sorted(answers, key=lambda x: x["score"], reverse=True)[: kwargs["topk"]] all_answers += answers if len(all_answers) == 1: return all_answers[0] return all_answers
[docs] def decode(self, start: np.ndarray, end: np.ndarray, topk: int, max_answer_len: int) -> Tuple: """ Take the output of any :obj:`ModelForQuestionAnswering` and will generate probabilities for each span to be the actual answer. In addition, it filters out some unwanted/impossible cases like answer len being greater than max_answer_len or answer end position being before the starting position. The method supports output the k-best answer through the topk argument. Args: start (:obj:`np.ndarray`): Individual start probabilities for each token. end (:obj:`np.ndarray`): Individual end probabilities for each token. topk (:obj:`int`): Indicates how many possible answer span(s) to extract from the model output. max_answer_len (:obj:`int`): Maximum size of the answer to extract from the model's output. """ # Ensure we have batch axis if start.ndim == 1: start = start[None] if end.ndim == 1: end = end[None] # Compute the score of each tuple(start, end) to be the real answer outer = np.matmul(np.expand_dims(start, -1), np.expand_dims(end, 1)) # Remove candidate with end < start and end - start > max_answer_len candidates = np.tril(np.triu(outer), max_answer_len - 1) # Inspired by Chen & al. (https://github.com/facebookresearch/DrQA) scores_flat = candidates.flatten() if topk == 1: idx_sort = [np.argmax(scores_flat)] elif len(scores_flat) < topk: idx_sort = np.argsort(-scores_flat) else: idx = np.argpartition(-scores_flat, topk)[0:topk] idx_sort = idx[np.argsort(-scores_flat[idx])] start, end = np.unravel_index(idx_sort, candidates.shape)[1:] return start, end, candidates[0, start, end]
[docs] def span_to_answer(self, text: str, start: int, end: int) -> Dict[str, Union[str, int]]: """ When decoding from token probabilities, this method maps token indexes to actual word in the initial context. Args: text (:obj:`str`): The actual context to extract the answer from. start (:obj:`int`): The answer starting token index. end (:obj:`int`): The answer end token index. Returns: Dictionary like :obj:`{'answer': str, 'start': int, 'end': int}` """ words = [] token_idx = char_start_idx = char_end_idx = chars_idx = 0 for i, word in enumerate(text.split(" ")): token = self.tokenizer.tokenize(word) # Append words if they are in the span if start <= token_idx <= end: if token_idx == start: char_start_idx = chars_idx if token_idx == end: char_end_idx = chars_idx + len(word) words += [word] # Stop if we went over the end of the answer if token_idx > end: break # Append the subtokenization length to the running index token_idx += len(token) chars_idx += len(word) + 1 # Join text with spaces return { "answer": " ".join(words), "start": max(0, char_start_idx), "end": min(len(text), char_end_idx), }
class TableQuestionAnsweringArgumentHandler(ArgumentHandler): """ Handles arguments for the TableQuestionAnsweringPipeline """ def __call__(self, table=None, query=None, sequential=False, padding=True, truncation=True): # Returns tqa_pipeline_inputs of shape: # [ # {"table": pd.DataFrame, "query": List[str]}, # ..., # {"table": pd.DataFrame, "query" : List[str]} # ] requires_pandas(self) import pandas as pd if table is None: raise ValueError("Keyword argument `table` cannot be None.") elif query is None: if isinstance(table, dict) and table.get("query") is not None and table.get("table") is not None: tqa_pipeline_inputs = [table] elif isinstance(table, list) and len(table) > 0: if not all(isinstance(d, dict) for d in table): raise ValueError( f"Keyword argument `table` should be a list of dict, but is {(type(d) for d in table)}" ) if table[0].get("query") is not None and table[0].get("table") is not None: tqa_pipeline_inputs = table else: raise ValueError( f"If keyword argument `table` is a list of dictionaries, each dictionary should have a `table` " f"and `query` key, but only dictionary has keys {table[0].keys()} `table` and `query` keys." ) else: raise ValueError( f"Invalid input. Keyword argument `table` should be either of type `dict` or `list`, but " f"is {type(table)})" ) else: tqa_pipeline_inputs = [{"table": table, "query": query}] for tqa_pipeline_input in tqa_pipeline_inputs: if not isinstance(tqa_pipeline_input["table"], pd.DataFrame): if tqa_pipeline_input["table"] is None: raise ValueError("Table cannot be None.") tqa_pipeline_input["table"] = pd.DataFrame(tqa_pipeline_input["table"]) return tqa_pipeline_inputs, sequential, padding, truncation
[docs]@add_end_docstrings(PIPELINE_INIT_ARGS) class TableQuestionAnsweringPipeline(Pipeline): """ Table Question Answering pipeline using a :obj:`ModelForTableQuestionAnswering`. This pipeline is only available in PyTorch. This tabular question answering pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"table-question-answering"`. The models that this pipeline can use are models that have been fine-tuned on a tabular question answering task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=table-question-answering>`__. """ default_input_names = "table,query" def __init__(self, args_parser=TableQuestionAnsweringArgumentHandler(), *args, **kwargs): super().__init__(*args, **kwargs) self._args_parser = args_parser if self.framework == "tf": raise ValueError("The TableQuestionAnsweringPipeline is only available in PyTorch.") self.check_model_type(MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING) self.aggregate = bool(getattr(self.model.config, "aggregation_labels")) and bool( getattr(self.model.config, "num_aggregation_labels") ) def batch_inference(self, **inputs): with torch.no_grad(): return self.model(**inputs) def sequential_inference(self, **inputs): """ Inference used for models that need to process sequences in a sequential fashion, like the SQA models which handle conversational query related to a table. """ with torch.no_grad(): all_logits = [] all_aggregations = [] prev_answers = None batch_size = inputs["input_ids"].shape[0] input_ids = inputs["input_ids"].to(self.device) attention_mask = inputs["attention_mask"].to(self.device) token_type_ids = inputs["token_type_ids"].to(self.device) token_type_ids_example = None for index in range(batch_size): # If sequences have already been processed, the token type IDs will be created according to the previous # answer. if prev_answers is not None: prev_labels_example = token_type_ids_example[:, 3] # shape (seq_len,) model_labels = np.zeros_like(prev_labels_example.cpu().numpy()) # shape (seq_len,) token_type_ids_example = token_type_ids[index] # shape (seq_len, 7) for i in range(model_labels.shape[0]): segment_id = token_type_ids_example[:, 0].tolist()[i] col_id = token_type_ids_example[:, 1].tolist()[i] - 1 row_id = token_type_ids_example[:, 2].tolist()[i] - 1 if row_id >= 0 and col_id >= 0 and segment_id == 1: model_labels[i] = int(prev_answers[(col_id, row_id)]) token_type_ids_example[:, 3] = torch.from_numpy(model_labels).type(torch.long).to(self.device) input_ids_example = input_ids[index] attention_mask_example = attention_mask[index] # shape (seq_len,) token_type_ids_example = token_type_ids[index] # shape (seq_len, 7) outputs = self.model( input_ids=input_ids_example.unsqueeze(0), attention_mask=attention_mask_example.unsqueeze(0), token_type_ids=token_type_ids_example.unsqueeze(0), ) logits = outputs.logits if self.aggregate: all_aggregations.append(outputs.logits_aggregation) all_logits.append(logits) dist_per_token = torch.distributions.Bernoulli(logits=logits) probabilities = dist_per_token.probs * attention_mask_example.type(torch.float32).to( dist_per_token.probs.device ) coords_to_probs = collections.defaultdict(list) for i, p in enumerate(probabilities.squeeze().tolist()): segment_id = token_type_ids_example[:, 0].tolist()[i] col = token_type_ids_example[:, 1].tolist()[i] - 1 row = token_type_ids_example[:, 2].tolist()[i] - 1 if col >= 0 and row >= 0 and segment_id == 1: coords_to_probs[(col, row)].append(p) prev_answers = {key: np.array(coords_to_probs[key]).mean() > 0.5 for key in coords_to_probs} logits_batch = torch.cat(tuple(all_logits), 0) return (logits_batch,) if not self.aggregate else (logits_batch, torch.cat(tuple(all_aggregations), 0))
[docs] def __call__(self, *args, **kwargs): r""" Answers queries according to a table. The pipeline accepts several types of inputs which are detailed below: - ``pipeline(table, query)`` - ``pipeline(table, [query])`` - ``pipeline(table=table, query=query)`` - ``pipeline(table=table, query=[query])`` - ``pipeline({"table": table, "query": query})`` - ``pipeline({"table": table, "query": [query]})`` - ``pipeline([{"table": table, "query": query}, {"table": table, "query": query}])`` The :obj:`table` argument should be a dict or a DataFrame built from that dict, containing the whole table: Example:: data = { "actors": ["brad pitt", "leonardo di caprio", "george clooney"], "age": ["56", "45", "59"], "number of movies": ["87", "53", "69"], "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"], } This dictionary can be passed in as such, or can be converted to a pandas DataFrame: Example:: import pandas as pd table = pd.DataFrame.from_dict(data) Args: table (:obj:`pd.DataFrame` or :obj:`Dict`): Pandas DataFrame or dictionary that will be converted to a DataFrame containing all the table values. See above for an example of dictionary. query (:obj:`str` or :obj:`List[str]`): Query or list of queries that will be sent to the model alongside the table. sequential (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to do inference sequentially or as a batch. Batching is faster, but models like SQA require the inference to be done sequentially to extract relations within sequences, given their conversational nature. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`False`): Activates and controls padding. Accepts the following values: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (:obj:`bool`, :obj:`str` or :class:`~transformers.TapasTruncationStrategy`, `optional`, defaults to :obj:`False`): Activates and controls truncation. Accepts the following values: * :obj:`True` or :obj:`'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate row by row, removing rows from the table. * :obj:`False` or :obj:`'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). Return: A dictionary or a list of dictionaries containing results: Each result is a dictionary with the following keys: - **answer** (:obj:`str`) -- The answer of the query given the table. If there is an aggregator, the answer will be preceded by :obj:`AGGREGATOR >`. - **coordinates** (:obj:`List[Tuple[int, int]]`) -- Coordinates of the cells of the answers. - **cells** (:obj:`List[str]`) -- List of strings made up of the answer cell values. - **aggregator** (:obj:`str`) -- If the model has an aggregator, this returns the aggregator. """ pipeline_inputs, sequential, padding, truncation = self._args_parser(*args, **kwargs) batched_answers = [] for pipeline_input in pipeline_inputs: table, query = pipeline_input["table"], pipeline_input["query"] inputs = self.tokenizer( table, query, return_tensors=self.framework, truncation="drop_rows_to_fit", padding=padding ) outputs = self.sequential_inference(**inputs) if sequential else self.batch_inference(**inputs) if self.aggregate: logits, logits_agg = outputs[:2] predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits.detach(), logits_agg) answer_coordinates_batch, agg_predictions = predictions aggregators = {i: self.model.config.aggregation_labels[pred] for i, pred in enumerate(agg_predictions)} no_agg_label_index = self.model.config.no_aggregation_label_index aggregators_prefix = { i: aggregators[i] + " > " for i, pred in enumerate(agg_predictions) if pred != no_agg_label_index } else: logits = outputs[0] predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits.detach()) answer_coordinates_batch = predictions[0] aggregators = {} aggregators_prefix = {} answers = [] for index, coordinates in enumerate(answer_coordinates_batch): cells = [table.iat[coordinate] for coordinate in coordinates] aggregator = aggregators.get(index, "") aggregator_prefix = aggregators_prefix.get(index, "") answer = { "answer": aggregator_prefix + ", ".join(cells), "coordinates": coordinates, "cells": [table.iat[coordinate] for coordinate in coordinates], } if aggregator: answer["aggregator"] = aggregator answers.append(answer) batched_answers.append(answers if len(answers) > 1 else answers[0]) return batched_answers if len(batched_answers) > 1 else batched_answers[0]
[docs]@add_end_docstrings(PIPELINE_INIT_ARGS) class SummarizationPipeline(Pipeline): """ Summarize news articles and other documents. This summarizing pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"summarization"`. The models that this pipeline can use are models that have been fine-tuned on a summarization task, which is currently, '`bart-large-cnn`', '`t5-small`', '`t5-base`', '`t5-large`', '`t5-3b`', '`t5-11b`'. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=summarization>`__. Usage:: # use bart in pytorch summarizer = pipeline("summarization") summarizer("Sam Shleifer writes the best docstring examples in the whole world.", min_length=5, max_length=20) # use t5 in tf summarizer = pipeline("summarization", model="t5-base", tokenizer="t5-base", framework="tf") summarizer("Sam Shleifer writes the best docstring examples in the whole world.", min_length=5, max_length=20) """ def __init__(self, *args, **kwargs): kwargs.update(task="summarization") super().__init__(*args, **kwargs) self.check_model_type( TF_MODEL_WITH_LM_HEAD_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
[docs] def __call__( self, *documents, return_tensors=False, return_text=True, clean_up_tokenization_spaces=False, **generate_kwargs ): r""" Summarize the text(s) given as inputs. Args: documents (`str` or :obj:`List[str]`): One or several articles (or one list of articles) to summarize. return_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to include the decoded texts in the outputs return_tensors (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to include the tensors of predictions (as token indices) in the outputs. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Return: A list or a list of list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **summary_text** (:obj:`str`, present when ``return_text=True``) -- The summary of the corresponding input. - **summary_token_ids** (:obj:`torch.Tensor` or :obj:`tf.Tensor`, present when ``return_tensors=True``) -- The token ids of the summary. """ assert return_tensors or return_text, "You must specify return_tensors=True or return_text=True" assert len(documents) > 0, "Please provide a document to summarize" prefix = self.model.config.prefix if self.model.config.prefix is not None else "" if isinstance(documents[0], list): assert ( self.tokenizer.pad_token_id is not None ), "Please make sure that the tokenizer has a pad_token_id when using a batch input" documents = ([prefix + document for document in documents[0]],) padding = True elif isinstance(documents[0], str): documents = (prefix + documents[0],) padding = False else: raise ValueError( " `documents[0]`: {} have the wrong format. The should be either of type `str` or type `list`".format( documents[0] ) ) with self.device_placement(): inputs = self._parse_and_tokenize(*documents, padding=padding) if self.framework == "pt": inputs = self.ensure_tensor_on_device(**inputs) input_length = inputs["input_ids"].shape[-1] elif self.framework == "tf": input_length = tf.shape(inputs["input_ids"])[-1].numpy() min_length = generate_kwargs.get("min_length", self.model.config.min_length) if input_length < min_length // 2: logger.warning( "Your min_length is set to {}, but you input_length is only {}. You might consider decreasing min_length manually, e.g. summarizer('...', min_length=10)".format( min_length, input_length ) ) max_length = generate_kwargs.get("max_length", self.model.config.max_length) if input_length < max_length: logger.warning( "Your max_length is set to {}, but you input_length is only {}. You might consider decreasing max_length manually, e.g. summarizer('...', max_length=50)".format( max_length, input_length ) ) summaries = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **generate_kwargs, ) results = [] for summary in summaries: record = {} if return_tensors: record["summary_token_ids"] = summary if return_text: record["summary_text"] = self.tokenizer.decode( summary, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) results.append(record) return results
[docs]@add_end_docstrings(PIPELINE_INIT_ARGS) class TranslationPipeline(Pipeline): """ Translates from one language to another. This translation pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"translation_xx_to_yy"`. The models that this pipeline can use are models that have been fine-tuned on a translation task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=translation>`__. Usage:: en_fr_translator = pipeline("translation_en_to_fr") en_fr_translator("How old are you?") """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.check_model_type( TF_MODEL_WITH_LM_HEAD_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
[docs] def __call__( self, *args, return_tensors=False, return_text=True, clean_up_tokenization_spaces=False, **generate_kwargs ): r""" Translate the text(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): Texts to be translated. return_tensors (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to include the tensors of predictions (as token indices) in the outputs. return_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to include the decoded texts in the outputs. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Return: A list or a list of list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **translation_text** (:obj:`str`, present when ``return_text=True``) -- The translation. - **translation_token_ids** (:obj:`torch.Tensor` or :obj:`tf.Tensor`, present when ``return_tensors=True``) -- The token ids of the translation. """ assert return_tensors or return_text, "You must specify return_tensors=True or return_text=True" prefix = self.model.config.prefix if self.model.config.prefix is not None else "" if isinstance(args[0], list): assert ( self.tokenizer.pad_token_id is not None ), "Please make sure that the tokenizer has a pad_token_id when using a batch input" args = ([prefix + text for text in args[0]],) padding = True elif isinstance(args[0], str): args = (prefix + args[0],) padding = False else: raise ValueError( " `documents[0]`: {} have the wrong format. The should be either of type `str` or type `list`".format( args[0] ) ) with self.device_placement(): inputs = self._parse_and_tokenize(*args, padding=padding) if self.framework == "pt": inputs = self.ensure_tensor_on_device(**inputs) input_length = inputs["input_ids"].shape[-1] elif self.framework == "tf": input_length = tf.shape(inputs["input_ids"])[-1].numpy() max_length = generate_kwargs.get("max_length", self.model.config.max_length) if input_length > 0.9 * max_length: logger.warning( "Your input_length: {} is bigger than 0.9 * max_length: {}. You might consider increasing your max_length manually, e.g. translator('...', max_length=400)".format( input_length, max_length ) ) translations = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **generate_kwargs, ) results = [] for translation in translations: record = {} if return_tensors: record["translation_token_ids"] = translation if return_text: record["translation_text"] = self.tokenizer.decode( translation, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) results.append(record) return results
[docs]@add_end_docstrings(PIPELINE_INIT_ARGS) class Text2TextGenerationPipeline(Pipeline): """ Pipeline for text to text generation using seq2seq models. This Text2TextGenerationPipeline pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"text2text-generation"`. The models that this pipeline can use are models that have been fine-tuned on a translation task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=seq2seq>`__. Usage:: text2text_generator = pipeline("text2text-generation") text2text_generator("question: What is 42 ? context: 42 is the answer to life, the universe and everything") """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
[docs] def __call__( self, *args, return_tensors=False, return_text=True, clean_up_tokenization_spaces=False, **generate_kwargs ): r""" Generate the output text(s) using text(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): Input text for the encoder. return_tensors (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to include the tensors of predictions (as token indices) in the outputs. return_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to include the decoded texts in the outputs. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Return: A list or a list of list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **generated_text** (:obj:`str`, present when ``return_text=True``) -- The generated text. - **generated_token_ids** (:obj:`torch.Tensor` or :obj:`tf.Tensor`, present when ``return_tensors=True``) -- The token ids of the generated text. """ assert return_tensors or return_text, "You must specify return_tensors=True or return_text=True" if isinstance(args[0], list): assert ( self.tokenizer.pad_token_id is not None ), "Please make sure that the tokenizer has a pad_token_id when using a batch input" padding = True elif isinstance(args[0], str): padding = False else: raise ValueError( " `documents[0]`: {} have the wrong format. The should be either of type `str` or type `list`".format( args[0] ) ) with self.device_placement(): inputs = self._parse_and_tokenize(*args, padding=padding) if self.framework == "pt": inputs = self.ensure_tensor_on_device(**inputs) generations = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **generate_kwargs, ) results = [] for generation in generations: record = {} if return_tensors: record["generated_token_ids"] = generation if return_text: record["generated_text"] = self.tokenizer.decode( generation, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) results.append(record) return results
[docs]class Conversation: """ Utility class containing a conversation and its history. This class is meant to be used as an input to the :class:`~transformers.ConversationalPipeline`. The conversation contains a number of utility function to manage the addition of new user input and generated model responses. A conversation needs to contain an unprocessed user input before being passed to the :class:`~transformers.ConversationalPipeline`. This user input is either created when the class is instantiated, or by calling :obj:`conversational_pipeline.append_response("input")` after a conversation turn. Arguments: text (:obj:`str`, `optional`): The initial user input to start the conversation. If not provided, a user input needs to be provided manually using the :meth:`~transformers.Conversation.add_user_input` method before the conversation can begin. conversation_id (:obj:`uuid.UUID`, `optional`): Unique identifier for the conversation. If not provided, a random UUID4 id will be assigned to the conversation. Usage:: conversation = Conversation("Going to the movies tonight - any suggestions?") # Steps usually performed by the model when generating a response: # 1. Mark the user input as processed (moved to the history) conversation.mark_processed() # 2. Append a mode response conversation.append_response("The Big lebowski.") conversation.add_user_input("Is it good?") """ def __init__(self, text: str = None, conversation_id: UUID = None): if not conversation_id: conversation_id = uuid.uuid4() self.uuid: UUID = conversation_id self.past_user_inputs: List[str] = [] self.generated_responses: List[str] = [] self.history: List[int] = [] self.new_user_input: Optional[str] = text def add_user_input(self, text: str, overwrite: bool = False): """ Add a user input to the conversation for the next round. This populates the internal :obj:`new_user_input` field. Args: text (:obj:`str`): The user input for the next conversation round. overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not existing and unprocessed user input should be overwritten when this function is called. """ if self.new_user_input: if overwrite: logger.warning( 'User input added while unprocessed input was existing: "{}" was overwritten with: "{}".'.format( self.new_user_input, text ) ) self.new_user_input = text else: logger.warning( 'User input added while unprocessed input was existing: "{}" new input ignored: "{}". ' "Set `overwrite` to True to overwrite unprocessed user input".format(self.new_user_input, text) ) else: self.new_user_input = text def mark_processed(self): """ Mark the conversation as processed (moves the content of :obj:`new_user_input` to :obj:`past_user_inputs`) and empties the :obj:`new_user_input` field. """ if self.new_user_input: self.past_user_inputs.append(self.new_user_input) self.new_user_input = None def append_response(self, response: str): """ Append a response to the list of generated responses. Args: response (:obj:`str`): The model generated response. """ self.generated_responses.append(response) def set_history(self, history: List[int]): """ Updates the value of the history of the conversation. The history is represented by a list of :obj:`token_ids`. The history is used by the model to generate responses based on the previous conversation turns. Args: history (:obj:`List[int]`): History of tokens provided and generated for this conversation. """ self.history = history def __repr__(self): """ Generates a string representation of the conversation. Return: :obj:`str`: Example: Conversation id: 7d15686b-dc94-49f2-9c4b-c9eac6a1f114 user >> Going to the movies tonight - any suggestions? bot >> The Big Lebowski """ output = "Conversation id: {} \n".format(self.uuid) for user_input, generated_response in zip(self.past_user_inputs, self.generated_responses): output += "user >> {} \n".format(user_input) output += "bot >> {} \n".format(generated_response) if self.new_user_input is not None: output += "user >> {} \n".format(self.new_user_input) return output
[docs]@add_end_docstrings( PIPELINE_INIT_ARGS, r""" min_length_for_response (:obj:`int`, `optional`, defaults to 32): The minimum length (in number of tokens) for a response. """, ) class ConversationalPipeline(Pipeline): """ Multi-turn conversational pipeline. This conversational pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"conversational"`. The models that this pipeline can use are models that have been fine-tuned on a multi-turn conversational task, currently: `'microsoft/DialoGPT-small'`, `'microsoft/DialoGPT-medium'`, `'microsoft/DialoGPT-large'`. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=conversational>`__. Usage:: conversational_pipeline = pipeline("conversational") conversation_1 = Conversation("Going to the movies tonight - any suggestions?") conversation_2 = Conversation("What's the last book you have read?") conversational_pipeline([conversation_1, conversation_2]) conversation_1.add_user_input("Is it an action movie?") conversation_2.add_user_input("What is the genre of this book?") conversational_pipeline([conversation_1, conversation_2]) """ def __init__(self, min_length_for_response=32, *args, **kwargs): super().__init__(*args, **kwargs) # We need at least an eos_token assert self.tokenizer.eos_token_id is not None, "DialoguePipeline tokenizer should have an EOS token set" if self.tokenizer.pad_token_id is None: self.tokenizer.pad_token = self.tokenizer.eos_token self.min_length_for_response = min_length_for_response
[docs] def __call__( self, conversations: Union[Conversation, List[Conversation]], clean_up_tokenization_spaces=True, **generate_kwargs ): r""" Generate responses for the conversation(s) given as inputs. Args: conversations (a :class:`~transformers.Conversation` or a list of :class:`~transformers.Conversation`): Conversations to generate responses for. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Returns: :class:`~transformers.Conversation` or a list of :class:`~transformers.Conversation`: Conversation(s) with updated generated responses for those containing a new user input. """ if isinstance(conversations, Conversation): conversations = [conversations] # Input validation if isinstance(conversations, list): for conversation in conversations: assert isinstance( conversation, Conversation ), "DialoguePipeline expects a Conversation or list of Conversations as an input" if conversation.new_user_input is None: raise ValueError( "Conversation with UUID {} does not contain new user input to process. " "Add user inputs with the conversation's `add_user_input` method".format( type(conversation.uuid) ) ) assert ( self.tokenizer.pad_token_id is not None or self.tokenizer.eos_token_id is not None ), "Please make sure that the tokenizer has a pad_token_id or eos_token_id when using a batch input" else: raise ValueError("DialoguePipeline expects a Conversation or list of Conversations as an input") with self.device_placement(): inputs = self._parse_and_tokenize([conversation.new_user_input for conversation in conversations]) histories = [conversation.history for conversation in conversations] max_length = generate_kwargs.get("max_length", self.model.config.max_length) inputs = self._concat_inputs_history(inputs, histories, max_length) if self.framework == "pt": inputs = self.ensure_tensor_on_device(**inputs) input_length = inputs["input_ids"].shape[-1] elif self.framework == "tf": input_length = tf.shape(inputs["input_ids"])[-1].numpy() if input_length > 0.9 * max_length: logger.warning( "Longest conversation length: {} is bigger than 0.9 * max_length: {}. " "You might consider trimming the early phase of the conversation".format(input_length, max_length) ) generated_responses = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **generate_kwargs, ) if self.model.config.is_encoder_decoder: if self.framework == "pt": history = torch.cat((inputs["input_ids"], generated_responses[:, 1:]), 1) elif self.framework == "tf": history = tf.concat([inputs["input_ids"], generated_responses[:, 1:]], 1) else: history = generated_responses history = self._clean_padding_history(history) if self.model.config.is_encoder_decoder: start_position = 1 else: start_position = input_length output = [] for conversation_index, conversation in enumerate(conversations): conversation.mark_processed() conversation.generated_responses.append( self.tokenizer.decode( generated_responses[conversation_index][start_position:], skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) ) conversation.set_history(history[conversation_index]) output.append(conversation) if len(output) == 1: return output[0] else: return output
def _parse_and_tokenize(self, inputs, **kwargs): """ Parse arguments and tokenize, adding an EOS token at the end of the user input """ # Parse arguments inputs = self.tokenizer(inputs, add_special_tokens=False, padding=False).get("input_ids", []) for input in inputs: input.append(self.tokenizer.eos_token_id) return inputs def _clean_padding_history(self, generated_tensor) -> List[List[int]]: """ Cleans the padding history. Padding may be generated in two places when multiple conversations are provided as an input: - at the end of the concatenated history and new user input, so that all input to the model have the same length - at the end of the generated response, as some responses will be longer than others This method cleans up these padding token so that the history for each conversation is not impacted by the batching process. """ outputs = [] for sequence in generated_tensor: sequence_tokens = [] is_previous_pad = False for token in sequence: if token == self.tokenizer.pad_token_id: if self.tokenizer.pad_token_id != self.tokenizer.eos_token_id: continue if is_previous_pad: continue else: is_previous_pad = True else: is_previous_pad = False if self.framework == "pt": sequence_tokens.append(token.item()) else: sequence_tokens.append(int(token.numpy())) outputs.append(sequence_tokens) return outputs def _concat_inputs_history(self, inputs: List[List[int]], histories: List[Optional[List[int]]], max_length: int): """ Builds an input prepended by the history for this conversation, allowing multi-turn conversation with context """ outputs = [] for new_input, history in zip(inputs, histories): if history is not None: new_input = history + new_input if len(new_input) > max_length - self.min_length_for_response: cutoff_eos_index = 0 while len(new_input) - cutoff_eos_index > max_length - self.min_length_for_response: if cutoff_eos_index >= len(new_input): break cutoff_eos_index = new_input[cutoff_eos_index:].index(self.tokenizer.eos_token_id) if cutoff_eos_index == 0 or cutoff_eos_index == len(new_input) - 1: break else: new_input = new_input[cutoff_eos_index + 1 :] outputs.append(new_input) padded_outputs = self.tokenizer.pad( {"input_ids": outputs}, padding="longest", return_attention_mask=True, return_tensors=self.framework ) return padded_outputs
# Register all the supported tasks here SUPPORTED_TASKS = { "feature-extraction": { "impl": FeatureExtractionPipeline, "tf": TFAutoModel if is_tf_available() else None, "pt": AutoModel if is_torch_available() else None, "default": {"model": {"pt": "distilbert-base-cased", "tf": "distilbert-base-cased"}}, }, "sentiment-analysis": { "impl": TextClassificationPipeline, "tf": TFAutoModelForSequenceClassification if is_tf_available() else None, "pt": AutoModelForSequenceClassification if is_torch_available() else None, "default": { "model": { "pt": "distilbert-base-uncased-finetuned-sst-2-english", "tf": "distilbert-base-uncased-finetuned-sst-2-english", }, }, }, "ner": { "impl": TokenClassificationPipeline, "tf": TFAutoModelForTokenClassification if is_tf_available() else None, "pt": AutoModelForTokenClassification if is_torch_available() else None, "default": { "model": { "pt": "dbmdz/bert-large-cased-finetuned-conll03-english", "tf": "dbmdz/bert-large-cased-finetuned-conll03-english", }, }, }, "question-answering": { "impl": QuestionAnsweringPipeline, "tf": TFAutoModelForQuestionAnswering if is_tf_available() else None, "pt": AutoModelForQuestionAnswering if is_torch_available() else None, "default": { "model": {"pt": "distilbert-base-cased-distilled-squad", "tf": "distilbert-base-cased-distilled-squad"}, }, }, "table-question-answering": { "impl": TableQuestionAnsweringPipeline, "pt": AutoModelForTableQuestionAnswering if is_torch_available() else None, "tf": None, "default": { "model": { "pt": "nielsr/tapas-base-finetuned-wtq", "tokenizer": "nielsr/tapas-base-finetuned-wtq", "tf": "nielsr/tapas-base-finetuned-wtq", }, }, }, "fill-mask": { "impl": FillMaskPipeline, "tf": TFAutoModelForMaskedLM if is_tf_available() else None, "pt": AutoModelForMaskedLM if is_torch_available() else None, "default": {"model": {"pt": "distilroberta-base", "tf": "distilroberta-base"}}, }, "summarization": { "impl": SummarizationPipeline, "tf": TFAutoModelForSeq2SeqLM if is_tf_available() else None, "pt": AutoModelForSeq2SeqLM if is_torch_available() else None, "default": {"model": {"pt": "sshleifer/distilbart-cnn-12-6", "tf": "t5-small"}}, }, # This task is a special case as it's parametrized by SRC, TGT languages. "translation": { "impl": TranslationPipeline, "tf": TFAutoModelForSeq2SeqLM if is_tf_available() else None, "pt": AutoModelForSeq2SeqLM if is_torch_available() else None, "default": { ("en", "fr"): {"model": {"pt": "t5-base", "tf": "t5-base"}}, ("en", "de"): {"model": {"pt": "t5-base", "tf": "t5-base"}}, ("en", "ro"): {"model": {"pt": "t5-base", "tf": "t5-base"}}, }, }, "text2text-generation": { "impl": Text2TextGenerationPipeline, "tf": TFAutoModelForSeq2SeqLM if is_tf_available() else None, "pt": AutoModelForSeq2SeqLM if is_torch_available() else None, "default": {"model": {"pt": "t5-base", "tf": "t5-base"}}, }, "text-generation": { "impl": TextGenerationPipeline, "tf": TFAutoModelForCausalLM if is_tf_available() else None, "pt": AutoModelForCausalLM if is_torch_available() else None, "default": {"model": {"pt": "gpt2", "tf": "gpt2"}}, }, "zero-shot-classification": { "impl": ZeroShotClassificationPipeline, "tf": TFAutoModelForSequenceClassification if is_tf_available() else None, "pt": AutoModelForSequenceClassification if is_torch_available() else None, "default": { "model": {"pt": "facebook/bart-large-mnli", "tf": "roberta-large-mnli"}, "config": {"pt": "facebook/bart-large-mnli", "tf": "roberta-large-mnli"}, "tokenizer": {"pt": "facebook/bart-large-mnli", "tf": "roberta-large-mnli"}, }, }, "conversational": { "impl": ConversationalPipeline, "tf": TFAutoModelForCausalLM if is_tf_available() else None, "pt": AutoModelForCausalLM if is_torch_available() else None, "default": {"model": {"pt": "microsoft/DialoGPT-medium", "tf": "microsoft/DialoGPT-medium"}}, }, } def check_task(task: str) -> Tuple[Dict, Any]: """ Checks an incoming task string, to validate it's correct and return the default Pipeline and Model classes, and default models if they exist. Args: task (:obj:`str`): The task defining which pipeline will be returned. Currently accepted tasks are: - :obj:`"feature-extraction"` - :obj:`"sentiment-analysis"` - :obj:`"ner"` - :obj:`"question-answering"` - :obj:`"fill-mask"` - :obj:`"summarization"` - :obj:`"translation_xx_to_yy"` - :obj:`"translation"` - :obj:`"text-generation"` - :obj:`"conversational"` Returns: (task_defaults:obj:`dict`, task_options: (:obj:`tuple`, None)) The actual dictionary required to initialize the pipeline and some extra task options for parametrized tasks like "translation_XX_to_YY" """ if task in SUPPORTED_TASKS: targeted_task = SUPPORTED_TASKS[task] return targeted_task, None if task.startswith("translation"): tokens = task.split("_") if len(tokens) == 4 and tokens[0] == "translation" and tokens[2] == "to": targeted_task = SUPPORTED_TASKS["translation"] return targeted_task, (tokens[1], tokens[3]) raise KeyError("Invalid translation task {}, use 'translation_XX_to_YY' format".format(task)) raise KeyError( "Unknown task {}, available tasks are {}".format(task, list(SUPPORTED_TASKS.keys()) + ["translation_XX_to_YY"]) )
[docs]def pipeline( task: str, model: Optional = None, config: Optional[Union[str, PretrainedConfig]] = None, tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None, framework: Optional[str] = None, revision: Optional[str] = None, use_fast: bool = True, **kwargs ) -> Pipeline: """ Utility factory method to build a :class:`~transformers.Pipeline`. Pipelines are made of: - A :doc:`tokenizer <tokenizer>` in charge of mapping raw textual input to token. - A :doc:`model <model>` to make predictions from the inputs. - Some (optional) post processing for enhancing model's output. Args: task (:obj:`str`): The task defining which pipeline will be returned. Currently accepted tasks are: - :obj:`"feature-extraction"`: will return a :class:`~transformers.FeatureExtractionPipeline`. - :obj:`"sentiment-analysis"`: will return a :class:`~transformers.TextClassificationPipeline`. - :obj:`"ner"`: will return a :class:`~transformers.TokenClassificationPipeline`. - :obj:`"question-answering"`: will return a :class:`~transformers.QuestionAnsweringPipeline`. - :obj:`"fill-mask"`: will return a :class:`~transformers.FillMaskPipeline`. - :obj:`"summarization"`: will return a :class:`~transformers.SummarizationPipeline`. - :obj:`"translation_xx_to_yy"`: will return a :class:`~transformers.TranslationPipeline`. - :obj:`"text2text-generation"`: will return a :class:`~transformers.Text2TextGenerationPipeline`. - :obj:`"text-generation"`: will return a :class:`~transformers.TextGenerationPipeline`. - :obj:`"zero-shot-classification:`: will return a :class:`~transformers.ZeroShotClassificationPipeline`. - :obj:`"conversation"`: will return a :class:`~transformers.ConversationalPipeline`. model (:obj:`str` or :obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`, `optional`): The model that will be used by the pipeline to make predictions. This can be a model identifier or an actual instance of a pretrained model inheriting from :class:`~transformers.PreTrainedModel` (for PyTorch) or :class:`~transformers.TFPreTrainedModel` (for TensorFlow). If not provided, the default for the :obj:`task` will be loaded. config (:obj:`str` or :obj:`~transformers.PretrainedConfig`, `optional`): The configuration that will be used by the pipeline to instantiate the model. This can be a model identifier or an actual pretrained model configuration inheriting from :class:`~transformers.PretrainedConfig`. If not provided, the default configuration file for the requested model will be used. That means that if :obj:`model` is given, its default configuration will be used. However, if :obj:`model` is not supplied, this :obj:`task`'s default model's config is used instead. tokenizer (:obj:`str` or :obj:`~transformers.PreTrainedTokenizer`, `optional`): The tokenizer that will be used by the pipeline to encode data for the model. This can be a model identifier or an actual pretrained tokenizer inheriting from :class:`~transformers.PreTrainedTokenizer`. If not provided, the default tokenizer for the given :obj:`model` will be loaded (if it is a string). If :obj:`model` is not specified or not a string, then the default tokenizer for :obj:`config` is loaded (if it is a string). However, if :obj:`config` is also not given or not a string, then the default tokenizer for the given :obj:`task` will be loaded. framework (:obj:`str`, `optional`): The framework to use, either :obj:`"pt"` for PyTorch or :obj:`"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the :obj:`model`, or to PyTorch if no model is provided. revision(:obj:`str`, `optional`, defaults to :obj:`"main"`): When passing a task name or a string model identifier: The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any identifier allowed by git. use_fast (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to use a Fast tokenizer if possible (a :class:`~transformers.PreTrainedTokenizerFast`). kwargs: Additional keyword arguments passed along to the specific pipeline init (see the documentation for the corresponding pipeline class for possible values). Returns: :class:`~transformers.Pipeline`: A suitable pipeline for the task. Examples:: >>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer >>> # Sentiment analysis pipeline >>> pipeline('sentiment-analysis') >>> # Question answering pipeline, specifying the checkpoint identifier >>> pipeline('question-answering', model='distilbert-base-cased-distilled-squad', tokenizer='bert-base-cased') >>> # Named entity recognition pipeline, passing in a specific model and tokenizer >>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english") >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") >>> pipeline('ner', model=model, tokenizer=tokenizer) """ # Retrieve the task targeted_task, task_options = check_task(task) # Use default model/config/tokenizer for the task if no model is provided if model is None: # At that point framework might still be undetermined model = get_default_model(targeted_task, framework, task_options) framework = framework or get_framework(model) task_class, model_class = targeted_task["impl"], targeted_task[framework] # Try to infer tokenizer from model or config name (if provided as str) if tokenizer is None: if isinstance(model, str): tokenizer = model elif isinstance(config, str): tokenizer = config else: # Impossible to guest what is the right tokenizer here raise Exception( "Impossible to guess which tokenizer to use. " "Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer." ) modelcard = None # Try to infer modelcard from model or config name (if provided as str) if isinstance(model, str): modelcard = model elif isinstance(config, str): modelcard = config # Instantiate tokenizer if needed if isinstance(tokenizer, (str, tuple)): if isinstance(tokenizer, tuple): # For tuple we have (tokenizer name, {kwargs}) use_fast = tokenizer[1].pop("use_fast", use_fast) tokenizer = AutoTokenizer.from_pretrained( tokenizer[0], use_fast=use_fast, revision=revision, **tokenizer[1] ) else: tokenizer = AutoTokenizer.from_pretrained(tokenizer, revision=revision, use_fast=use_fast) # Instantiate config if needed if isinstance(config, str): config = AutoConfig.from_pretrained(config, revision=revision) # Instantiate modelcard if needed if isinstance(modelcard, str): modelcard = ModelCard.from_pretrained(modelcard, revision=revision) # Instantiate model if needed if isinstance(model, str): # Handle transparent TF/PT model conversion model_kwargs = {} if framework == "pt" and model.endswith(".h5"): model_kwargs["from_tf"] = True logger.warning( "Model might be a TensorFlow model (ending with `.h5`) but TensorFlow is not available. " "Trying to load the model with PyTorch." ) elif framework == "tf" and model.endswith(".bin"): model_kwargs["from_pt"] = True logger.warning( "Model might be a PyTorch model (ending with `.bin`) but PyTorch is not available. " "Trying to load the model with Tensorflow." ) if model_class is None: raise ValueError( f"Pipeline using {framework} framework, but this framework is not supported by this pipeline." ) model = model_class.from_pretrained(model, config=config, revision=revision, **model_kwargs) if task == "translation" and model.config.task_specific_params: for key in model.config.task_specific_params: if key.startswith("translation"): task = key warnings.warn( '"translation" task was used, instead of "translation_XX_to_YY", defaulting to "{}"'.format( task ), UserWarning, ) break return task_class(model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, task=task, **kwargs)