Source code for transformers.models.lxmert.modeling_tf_lxmert

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, The HuggingFace Inc. team, and the
# Lxmert Authors.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 LXMERT model. """

from dataclasses import dataclass
from typing import Dict, Optional, Tuple

import tensorflow as tf

from ...activations_tf import get_tf_activation
from ...file_utils import (
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
)
from ...modeling_tf_utils import TFPreTrainedModel, get_initializer, input_processing, keras_serializable, shape_list
from ...utils import logging
from .configuration_lxmert import LxmertConfig


logger = logging.get_logger(__name__)


_CONFIG_FOR_DOC = "LxmertConfig"
_TOKENIZER_FOR_DOC = "LxmertTokenizer"

TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "unc-nlp/lxmert-base-uncased",
]


[docs]@dataclass class TFLxmertModelOutput(ModelOutput): """ Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language, visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship" encoder") Args: language_output (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the language encoder. vision_output (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the visual encoder. pooled_output (:obj:`tf.Tensor` of shape :obj:`(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification, CLS, token) further processed by a Linear layer and a Tanh activation function. The Linear language_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. vision_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. language_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. vision_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_encoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ language_output: Optional[tf.Tensor] = None vision_output: Optional[tf.Tensor] = None pooled_output: Optional[tf.Tensor] = None language_hidden_states: Optional[Tuple[tf.Tensor]] = None vision_hidden_states: Optional[Tuple[tf.Tensor]] = None language_attentions: Optional[Tuple[tf.Tensor]] = None vision_attentions: Optional[Tuple[tf.Tensor]] = None cross_encoder_attentions: Optional[Tuple[tf.Tensor]] = None
[docs]@dataclass class TFLxmertForPreTrainingOutput(ModelOutput): """ Output type of :class:`~transformers.LxmertForPreTraining`. Args: loss (`optional`, returned when ``labels`` is provided, ``tf.Tensor`` of shape :obj:`(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). cross_relationship_score: (:obj:`tf.Tensor` of shape :obj:`(batch_size, 2)`): Prediction scores of the textual matching objective (classification) head (scores of True/False continuation before SoftMax). question_answering_score: (:obj:`tf.Tensor` of shape :obj:`(batch_size, n_qa_answers)`): Prediction scores of question answering objective (classification). language_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. vision_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. language_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. vision_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_encoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[tf.Tensor] = None prediction_logits: Optional[tf.Tensor] = None cross_relationship_score: Optional[tf.Tensor] = None question_answering_score: Optional[tf.Tensor] = None language_hidden_states: Optional[Tuple[tf.Tensor]] = None vision_hidden_states: Optional[Tuple[tf.Tensor]] = None language_attentions: Optional[Tuple[tf.Tensor]] = None vision_attentions: Optional[Tuple[tf.Tensor]] = None cross_encoder_attentions: Optional[Tuple[tf.Tensor]] = None
class TFLxmertVisualFeatureEncoder(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) # Object feature encoding self.visn_fc = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="visn_fc", ) self.visn_layer_norm = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="visn_layer_norm" ) # Box position encoding self.box_fc = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="box_fc", ) self.box_layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="box_layer_norm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, visn_input, training=False): feats, boxes = visn_input x = self.visn_fc(feats) x = self.visn_layer_norm(x) y = self.box_fc(boxes) y = self.box_layer_norm(y) output = (x + y) / 2 output = self.dropout(output, training=training) return output class TFLxmertEmbeddings(tf.keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.hidden_size = config.hidden_size self.initializer_range = config.initializer_range self.position_embeddings = tf.keras.layers.Embedding( config.max_position_embeddings, config.hidden_size, embeddings_initializer=get_initializer(self.initializer_range), name="position_embeddings", ) self.token_type_embeddings = tf.keras.layers.Embedding( config.type_vocab_size, config.hidden_size, embeddings_initializer=get_initializer(self.initializer_range), name="token_type_embeddings", ) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def build(self, input_shape): """Build shared word embedding layer """ with tf.name_scope("word_embeddings"): # Create and initialize weights. The random normal initializer was chosen # arbitrarily, and works well. self.word_embeddings = self.add_weight( "weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) super().build(input_shape) def call(self, inputs, mode="embedding", training=False): """ Get token embeddings of inputs. Args: inputs: list of three int64 tensors with shape [batch_size, length]: (input_ids, position_ids, token_type_ids) mode: string, a valid value is one of "embedding" and "linear". Returns: outputs: If mode == "embedding", output embedding tensor, float32 with shape [batch_size, length, embedding_size]; if mode == "linear", output linear tensor, float32 with shape [batch_size, length, vocab_size]. Raises: ValueError: if mode is not valid. Shared weights logic adapted from https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 """ if mode == "embedding": return self._embedding(inputs, training=training) elif mode == "linear": return self._linear(inputs) else: raise ValueError("mode {} is not valid.".format(mode)) def _embedding(self, inputs, training=False): """Applies embedding based on inputs tensor.""" input_ids, token_type_ids, inputs_embeds = inputs if input_ids is not None: input_shape = shape_list(input_ids) else: input_shape = shape_list(inputs_embeds)[:-1] seq_length = input_shape[1] position_ids = tf.range(seq_length, dtype=tf.int32)[tf.newaxis, :] if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) if inputs_embeds is None: inputs_embeds = tf.gather(self.word_embeddings, input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings, training=training) return embeddings def _linear(self, inputs): """ Computes logits by running inputs through a linear layer. Args: inputs: A float32 tensor with shape [batch_size, length, hidden_size] Returns: float32 tensor with shape [batch_size, length, vocab_size]. """ batch_size = shape_list(inputs)[0] length = shape_list(inputs)[1] x = tf.reshape(inputs, [-1, self.hidden_size]) logits = tf.matmul(x, self.word_embeddings, transpose_b=True) return tf.reshape(logits, [batch_size, length, self.vocab_size]) class TFLxmertAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads assert config.hidden_size % config.num_attention_heads == 0 self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query", ) self.key = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key", ) self.value = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value", ) self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x, batch_size): x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, hidden_states, context, attention_mask, output_attentions, training=False): batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul( query_layer, key_layer, transpose_b=True ) # (batch size, num_heads, seq_len_q, seq_len_k) dk = tf.cast(shape_list(key_layer)[-1], tf.float32) # scale attention_scores attention_scores = attention_scores / tf.math.sqrt(dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFBertModel call() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = tf.nn.softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) context_layer = tf.reshape( context_layer, (batch_size, -1, self.all_head_size) ) # (batch_size, seq_len_q, all_head_size) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class TFLxmertIntermediate(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class TFLxmertOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, hidden_states, input_tensor, training=False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class TFLxmertAttentionOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, hidden_states, input_tensor, training=False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class TFLxmertSelfAttentionLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.self = TFLxmertAttention(config, name="self") self.attention_output = TFLxmertAttentionOutput(config, name="output") def call(self, input_tensor, attention_mask, output_attentions, training=False): # Self attention attends to itself, thus keys and queries are the same (input_tensor). self_output = self.self(input_tensor, input_tensor, attention_mask, output_attentions) if output_attentions: attention_probs = self_output[1] attention_output = self.attention_output(self_output[0], input_tensor) return (attention_output, attention_probs) if output_attentions else (attention_output,) class TFLxmertCrossAttentionLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.att = TFLxmertAttention(config, name="att") self.attention_output = TFLxmertAttentionOutput(config, name="output") def call( self, input_tensor, ctx_tensor, ctx_att_mask, output_attentions=False, training=False, ): output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions, training=training) if output_attentions: attention_probs = output[1] attention_output = self.attention_output(output[0], input_tensor, training=training) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs class TFLxmertLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.attention = TFLxmertSelfAttentionLayer(config, name="attention") self.intermediate = TFLxmertIntermediate(config, name="intermediate") self.transformer_output = TFLxmertOutput(config, name="output") def call(self, hidden_states, attention_mask, output_attentions, training=False): attention_outputs = self.attention(hidden_states, attention_mask, output_attentions, training=training) attention_output = attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.transformer_output(intermediate_output, attention_output, training=training) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs class TFLxmertXLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.visual_attention = TFLxmertCrossAttentionLayer(config, name="visual_attention") # Self-attention Layers self.lang_self_att = TFLxmertSelfAttentionLayer(config, name="lang_self_att") self.visn_self_att = TFLxmertSelfAttentionLayer(config, name="visn_self_att") # Intermediate and Output Layers (FFNs) self.lang_inter = TFLxmertIntermediate(config, name="lang_inter") self.lang_output = TFLxmertOutput(config, name="lang_output") self.visn_inter = TFLxmertIntermediate(config, name="visn_inter") self.visn_output = TFLxmertOutput(config, name="visn_output") def cross_att( self, lang_input, lang_attention_mask, visn_input, visn_attention_mask, output_attentions, training=False, ): # Cross Attention # Keras saving and loading model *does not work* with the same inputs for two layers. lang_attention_lang_input = tf.identity(lang_input) visn_attention_lang_input = tf.identity(lang_input) lang_attention_visn_input = tf.identity(visn_input) visn_attention_visn_input = tf.identity(visn_input) lang_att_output = self.visual_attention( lang_attention_lang_input, lang_attention_visn_input, visn_attention_mask, output_attentions=output_attentions, training=training, ) visn_att_output = self.visual_attention( visn_attention_visn_input, visn_attention_lang_input, lang_attention_mask, output_attentions=output_attentions, training=training, ) return lang_att_output, visn_att_output def self_att( self, lang_input, lang_attention_mask, visn_input, visn_attention_mask, training=False, ): # Self Attention output_attentions = False lang_att_output = self.lang_self_att(lang_input, lang_attention_mask, output_attentions, training=training) visn_att_output = self.visn_self_att(visn_input, visn_attention_mask, output_attentions, training=training) return lang_att_output[0], visn_att_output[0] def output_fc(self, lang_input, visn_input, training=False): # FC layers lang_inter_output = self.lang_inter(lang_input) visn_inter_output = self.visn_inter(visn_input) # Layer output lang_output = self.lang_output(lang_inter_output, lang_input, training) visn_output = self.visn_output(visn_inter_output, visn_input, training) return lang_output, visn_output def call( self, lang_feats, lang_attention_mask, visn_feats, visn_attention_mask, output_attentions, training=False, ): lang_att_output = lang_feats visn_att_output = visn_feats lang_att_output, visn_att_output = self.cross_att( lang_att_output, lang_attention_mask, visn_att_output, visn_attention_mask, output_attentions, training=training, ) attention_probs = lang_att_output[1:] lang_att_output, visn_att_output = self.self_att( lang_att_output[0], lang_attention_mask, visn_att_output[0], visn_attention_mask, training=training, ) lang_output, visn_output = self.output_fc(lang_att_output, visn_att_output, training=training) return (lang_output, visn_output, attention_probs[0]) if output_attentions else (lang_output, visn_output) class TFLxmertEncoder(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.visn_fc = TFLxmertVisualFeatureEncoder(config, name="visn_fc") # Number of layers self.num_l_layers = config.l_layers self.num_x_layers = config.x_layers self.num_r_layers = config.r_layers # Layers # Using self.layer instead of self.l_layer to support loading BERT weights. self.layer = [TFLxmertLayer(config, name="layer_._{}".format(i)) for i in range(self.num_l_layers)] self.x_layers = [TFLxmertXLayer(config, name="x_layers_._{}".format(i)) for i in range(self.num_x_layers)] self.r_layers = [TFLxmertLayer(config, name="r_layers_._{}".format(i)) for i in range(self.num_r_layers)] self.config = config def call( self, lang_feats=None, lang_attention_mask=None, visual_feats=None, visual_pos=None, visual_attention_mask=None, output_attentions=None, training=False, ): vision_hidden_states = () language_hidden_states = () vision_attentions = () if output_attentions or self.config.output_attentions else None language_attentions = () if output_attentions or self.config.output_attentions else None cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None visual_feats = self.visn_fc([visual_feats, visual_pos], training=training) # Run language layers for layer_module in self.layer: l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions, training=training) lang_feats = l_outputs[0] language_hidden_states = language_hidden_states + (lang_feats,) if language_attentions is not None: language_attentions = language_attentions + (l_outputs[1],) # Run relational layers for layer_module in self.r_layers: v_outputs = layer_module( visual_feats, visual_attention_mask, output_attentions, training=training, ) visual_feats = v_outputs[0] vision_hidden_states = vision_hidden_states + (visual_feats,) if vision_attentions is not None: vision_attentions = vision_attentions + (v_outputs[1],) # Run cross-modality layers for layer_module in self.x_layers: x_outputs = layer_module( lang_feats, lang_attention_mask, visual_feats, visual_attention_mask, output_attentions, training=training, ) lang_feats, visual_feats = x_outputs[:2] vision_hidden_states = vision_hidden_states + (visual_feats,) language_hidden_states = language_hidden_states + (lang_feats,) if cross_encoder_attentions is not None: cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],) visual_encoder_outputs = ( vision_hidden_states, vision_attentions if output_attentions else None, ) lang_encoder_outputs = ( language_hidden_states, language_attentions if output_attentions else None, ) return ( visual_encoder_outputs, lang_encoder_outputs, cross_encoder_attentions if output_attentions else None, ) @keras_serializable class TFLxmertMainLayer(tf.keras.layers.Layer): config_class = LxmertConfig @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ batch_size = 2 num_visual_features = 10 input_ids = tf.constant([[3, 5, 6], [2, 3, 4]]) visual_feats = tf.random.uniform((batch_size, num_visual_features, self.config.visual_feat_dim)) visual_pos = tf.random.uniform((batch_size, num_visual_features, 4)) return { "input_ids": input_ids, "visual_feats": visual_feats, "visual_pos": visual_pos, } def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.num_l_layers = config.l_layers self.num_x_layers = config.x_layers self.num_r_layers = config.r_layers self.initializer_range = config.initializer_range self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.embeddings = TFLxmertEmbeddings(config, name="embeddings") self.encoder = TFLxmertEncoder(config, name="encoder") self.pooler = TFLxmertPooler(config, name="pooler") self.config = config def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value self.embeddings.vocab_size = value.shape[0] def _resize_token_embeddings(self, new_num_tokens): raise NotImplementedError def _prune_heads(self, heads_to_prune): raise NotImplementedError def call( self, input_ids=None, visual_feats=None, visual_pos=None, attention_mask=None, visual_attention_mask=None, token_type_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, visual_feats=visual_feats, visual_pos=visual_pos, attention_mask=attention_mask, visual_attention_mask=visual_attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif inputs["input_ids"] is not None: input_shape = shape_list(inputs["input_ids"]) elif inputs["inputs_embeds"] is not None: input_shape = shape_list(inputs["inputs_embeds"])[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs["visual_pos"] is None or inputs["visual_feats"] is None: raise ValueError("visual_feats and visual_pos cannot be `None` in LXMERT's `call` method.") if inputs["attention_mask"] is None: inputs["attention_mask"] = tf.fill(input_shape, 1) if inputs["token_type_ids"] is None: inputs["token_type_ids"] = tf.fill(input_shape, 0) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = inputs["attention_mask"][:, tf.newaxis, tf.newaxis, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, tf.float32) extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 if inputs["visual_attention_mask"] is not None: extended_visual_attention_mask = inputs["visual_attention_mask"][:, tf.newaxis, tf.newaxis, :] extended_visual_attention_mask = tf.cast(extended_visual_attention_mask, tf.float32) extended_visual_attention_mask = (1.0 - extended_visual_attention_mask) * -10000.0 else: extended_visual_attention_mask = None # Positional Word Embeddings embedding_output = self.embeddings( [inputs["input_ids"], inputs["token_type_ids"], inputs["inputs_embeds"]], training=inputs["training"] ) # Run Lxmert encoder encoder_outputs = self.encoder( embedding_output, extended_attention_mask, inputs["visual_feats"], inputs["visual_pos"], extended_visual_attention_mask, output_attentions=inputs["output_attentions"], training=inputs["training"], ) visual_encoder_outputs, lang_encoder_outputs = encoder_outputs[:2] vision_hidden_states = visual_encoder_outputs[0] language_hidden_states = lang_encoder_outputs[0] all_attentions = () if inputs["output_attentions"]: language_attentions = lang_encoder_outputs[1] vision_attentions = visual_encoder_outputs[1] cross_encoder_attentions = encoder_outputs[2] all_attentions = ( language_attentions, vision_attentions, cross_encoder_attentions, ) hidden_states = (language_hidden_states, vision_hidden_states) if inputs["output_hidden_states"] else () visual_output = vision_hidden_states[-1] lang_output = language_hidden_states[-1] pooled_output = self.pooler(lang_output) if not inputs["return_dict"]: return (lang_output, visual_output, pooled_output) + hidden_states + all_attentions return TFLxmertModelOutput( pooled_output=pooled_output, language_output=lang_output, vision_output=visual_output, language_hidden_states=language_hidden_states if inputs["output_hidden_states"] else None, vision_hidden_states=vision_hidden_states if inputs["output_hidden_states"] else None, language_attentions=language_attentions if inputs["output_attentions"] else None, vision_attentions=vision_attentions if inputs["output_attentions"] else None, cross_encoder_attentions=cross_encoder_attentions if inputs["output_attentions"] else None, ) class TFLxmertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LxmertConfig base_model_prefix = "lxmert" @property def dummy_inputs(self) -> Dict[str, tf.Tensor]: return getattr(self, self.base_model_prefix).dummy_inputs LXMERT_START_DOCSTRING = r""" The LXMERT model was proposed in `LXMERT: Learning Cross-Modality Encoder Representations from Transformers <https://arxiv.org/abs/1908.07490>`__ by Hao Tan and Mohit Bansal. It's a vision and language transformer model, pre-trained on a variety of multi-modal datasets comprising of GQA, VQAv2.0, MCSCOCO captions, and Visual genome, using a combination of masked language modeling, region of interest feature regression, cross entropy loss for question answering attribute prediction, and object tag prediction. This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Parameters: config (:class:`~transformers.LxmertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ LXMERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.LxmertTokenizer`. See :func:`transformers.PreTrainedTokenizer.__call__` and :func:`transformers.PreTrainedTokenizer.encode` for details. `What are input IDs? <../glossary.html#input-ids>`__ visual_feats: (:obj:`tf.Tensor` of shape :obj:՝(batch_size, num_visual_features, visual_feat_dim)՝): This input represents visual features. They ROI pooled object features from bounding boxes using a faster-RCNN model) These are currently not provided by the transformers library. visual_pos: (:obj:`tf.Tensor` of shape :obj:՝(batch_size, num_visual_features, visual_feat_dim)՝): This input represents spacial features corresponding to their relative (via index) visual features. The pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to 1. These are currently not provided by the transformers library. attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ visual_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): MMask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`__ inputs_embeds (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. training (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """
[docs]@add_start_docstrings( "The bare Lxmert Model transformer outputting raw hidden-states without any specific head on top.", LXMERT_START_DOCSTRING, ) class TFLxmertModel(TFLxmertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.lxmert = TFLxmertMainLayer(config, name="lxmert")
[docs] @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="unc-nlp/lxmert-base-uncased", output_type=TFLxmertModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, visual_feats=None, visual_pos=None, attention_mask=None, visual_attention_mask=None, token_type_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, visual_feats=visual_feats, visual_pos=visual_pos, attention_mask=attention_mask, visual_attention_mask=visual_attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) outputs = self.lxmert( input_ids=inputs["input_ids"], visual_feats=inputs["visual_feats"], visual_pos=inputs["visual_pos"], attention_mask=inputs["attention_mask"], visual_attention_mask=inputs["visual_attention_mask"], token_type_ids=inputs["token_type_ids"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) return outputs
class TFLxmertPooler(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) def call(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) return pooled_output class TFLxmertPredictionHeadTransform(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class TFLxmertLMPredictionHead(tf.keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.transform = TFLxmertPredictionHeadTransform(config, name="transform") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def call(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.input_embeddings(hidden_states, mode="linear") hidden_states = hidden_states + self.bias return hidden_states class TFLxmertMLMHead(tf.keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.predictions = TFLxmertLMPredictionHead(config, input_embeddings, name="predictions") def call(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class TFLxmertPreTrainingHeads(tf.keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.predictions = TFLxmertLMPredictionHead(config, input_embeddings, name="predictions") self.seq_relationship = tf.keras.layers.Dense( 2, kernel_initializer=get_initializer(config.initializer_range), name="seq_relationship", ) def call(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class TFLxmertVisualAnswerHead(tf.keras.layers.Layer): def __init__(self, config, num_labels, **kwargs): super().__init__(**kwargs) hid_dim = config.hidden_size self.dense = tf.keras.layers.Dense( hid_dim * 2, kernel_initializer=get_initializer(config.initializer_range), name="logit_fc_._0", ) self.activation = get_tf_activation("gelu") self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="logit_fc_._2") self.dense_1 = tf.keras.layers.Dense( num_labels, kernel_initializer=get_initializer(config.initializer_range), name="logit_fc_._3", ) def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.dense_1(hidden_states) return hidden_states class TFLxmertVisualObjHead(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.transform = TFLxmertPredictionHeadTransform(config, name="transform") # Decide the use of visual losses visual_losses = {} if config.visual_obj_loss: visual_losses["obj"] = {"shape": (-1,), "num": config.num_object_labels} if config.visual_attr_loss: visual_losses["attr"] = {"shape": (-1,), "num": config.num_attr_labels} if config.visual_obj_loss: visual_losses["feat"] = {"shape": (-1, 2048), "num": config.visual_feat_dim} self.visual_losses = visual_losses # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder_dict = { key: tf.keras.layers.Dense( self.visual_losses[key]["num"], kernel_initializer=get_initializer(config.initializer_range), name=f"decoder_dict.{key}", ) for key in self.visual_losses } def call(self, hidden_states): hidden_states = self.transform(hidden_states) output = {} for key in self.visual_losses: output[key] = self.decoder_dict[key](hidden_states) return output
[docs]@add_start_docstrings("""Lxmert Model with a `language modeling` head on top. """, LXMERT_START_DOCSTRING) class TFLxmertForPreTraining(TFLxmertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config self.num_qa_labels = config.num_qa_labels self.visual_loss_normalizer = config.visual_loss_normalizer # Use of pretraining tasks self.task_mask_lm = config.task_mask_lm self.task_obj_predict = config.task_obj_predict self.task_matched = config.task_matched self.task_qa = config.task_qa # Lxmert backbone self.lxmert = TFLxmertMainLayer(config, name="lxmert") # Pre-training heads self.cls = TFLxmertPreTrainingHeads(config, self.lxmert.embeddings, name="cls") if self.task_obj_predict: self.obj_predict_head = TFLxmertVisualObjHead(config, name="obj_predict_head") if self.task_qa: self.answer_head = TFLxmertVisualAnswerHead(config, self.num_qa_labels, name="answer_head") # Loss functions self.loss_fcts = { "l2": tf.keras.losses.Huber(delta=1.0, name="huber_loss"), "visn_ce": tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), "ce": tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), } visual_losses = {} if config.visual_obj_loss: visual_losses["obj"] = { "shape": (-1,), "num": config.num_object_labels, "loss": "visn_ce", } if config.visual_attr_loss: visual_losses["attr"] = { "shape": (-1,), "num": config.num_attr_labels, "loss": "visn_ce", } if config.visual_obj_loss: visual_losses["feat"] = { "shape": (-1, config.visual_feat_dim), "num": config.visual_feat_dim, "loss": "l2", } self.visual_losses = visual_losses @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ batch_size = 2 num_visual_features = 10 input_ids = tf.constant([[3, 5, 6], [2, 3, 4]]) visual_feats = tf.random.uniform((batch_size, num_visual_features, self.config.visual_feat_dim)) visual_pos = tf.random.uniform((batch_size, num_visual_features, 4)) if self.config.task_obj_predict: obj_labels = {} if self.config.visual_attr_loss and self.config.task_obj_predict: obj_labels["attr"] = ( tf.ones([batch_size, num_visual_features]), tf.ones([batch_size, num_visual_features]), ) if self.config.visual_feat_loss and self.config.task_obj_predict: obj_labels["feat"] = ( tf.ones([batch_size, num_visual_features, self.config.visual_feat_dim]), tf.ones([batch_size, num_visual_features]), ) if self.config.visual_obj_loss and self.config.task_obj_predict: obj_labels["obj"] = ( tf.ones([batch_size, num_visual_features]), tf.ones([batch_size, num_visual_features]), ) return { **{ "input_ids": input_ids, "visual_feats": visual_feats, "visual_pos": visual_pos, }, **({"obj_labels": obj_labels} if self.config.task_obj_predict else {}), } def get_output_embeddings(self): return self.lxmert.embeddings def get_output_layer_with_bias(self): return self.cls.predictions def get_prefix_bias_name(self): return self.name + "/" + self.cls.name + "/" + self.cls.predictions.name
[docs] @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFLxmertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids=None, visual_feats=None, visual_pos=None, attention_mask=None, visual_attention_mask=None, token_type_ids=None, inputs_embeds=None, masked_lm_labels=None, obj_labels=None, matched_label=None, ans=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): r""" masked_lm_labels (``tf.Tensor`` of shape ``(batch_size, sequence_length)``, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` obj_labels: (``Dict[Str: Tuple[tf.Tensor, tf.Tensor]]``, `optional`, defaults to :obj: `None`): each key is named after each one of the visual losses and each element of the tuple is of the shape ``(batch_size, num_features)`` and ``(batch_size, num_features, visual_feature_dim)`` for each the label id and the label score respectively matched_label (``tf.Tensor`` of shape ``(batch_size,)``, `optional`): Labels for computing the whether or not the text input matches the image (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``: - 0 indicates that the sentence does not match the image, - 1 indicates that the sentence does match the image. ans: (``Torch.Tensor`` of shape ``(batch_size)``, `optional`, defaults to :obj: `None`): a one hot representation hof the correct answer `optional` Returns: """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, visual_feats=visual_feats, visual_pos=visual_pos, attention_mask=attention_mask, visual_attention_mask=visual_attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, masked_lm_labels=masked_lm_labels, obj_labels=obj_labels, matched_label=matched_label, ans=ans, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) lxmert_output = self.lxmert( input_ids=inputs["input_ids"], visual_feats=inputs["visual_feats"], visual_pos=inputs["visual_pos"], attention_mask=inputs["attention_mask"], visual_attention_mask=inputs["visual_attention_mask"], token_type_ids=inputs["token_type_ids"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) lang_output, visual_output, pooled_output = ( lxmert_output[0], lxmert_output[1], lxmert_output[2], ) lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output) if self.task_qa: answer_score = self.answer_head(pooled_output) else: answer_score = pooled_output[0][0] total_loss = ( None if ( inputs["masked_lm_labels"] is None and inputs["matched_label"] is None and inputs["obj_labels"] is None and inputs["ans"] is None ) else tf.constant(0.0) ) losses = () if inputs["masked_lm_labels"] is not None and self.task_mask_lm: masked_lm_loss = self.loss_fcts["ce"]( tf.reshape(inputs["masked_lm_labels"], [-1]), tf.reshape(lang_prediction_scores, [-1, self.config.vocab_size]), ) total_loss += masked_lm_loss losses += (masked_lm_loss,) if inputs["matched_label"] is not None and self.task_matched: matched_loss = self.loss_fcts["ce"]( tf.reshape(inputs["matched_label"], [-1]), tf.reshape(cross_relationship_score, [-1, 2]), ) total_loss += matched_loss losses += (matched_loss,) if inputs["obj_labels"] is not None and self.task_obj_predict: total_visn_loss = 0.0 visn_prediction_scores_dict = self.obj_predict_head(visual_output) for key, key_info in self.visual_losses.items(): label, mask_conf = inputs["obj_labels"][key] output_dim = key_info["num"] loss_fct_name = key_info["loss"] label_shape = key_info["shape"] weight = self.visual_loss_normalizer visn_loss_fct = self.loss_fcts[loss_fct_name] visn_prediction_scores = visn_prediction_scores_dict[key] visn_loss = visn_loss_fct( tf.reshape(label, label_shape), tf.reshape(visn_prediction_scores, [-1, output_dim]), ) if visn_loss.ndim > 1: # Regression Losses visn_loss = tf.reduce_mean(visn_loss) visn_loss = tf.reduce_mean(visn_loss * tf.cast(tf.reshape(mask_conf, [-1]), visn_loss.dtype)) * weight total_visn_loss += visn_loss losses += (visn_loss,) total_loss += total_visn_loss if inputs["ans"] is not None and self.task_qa: answer_loss = self.loss_fcts["ce"]( tf.reshape(ans, [-1]), tf.reshape(answer_score, [-1, self.num_qa_labels]) ) # exclude "*2" here to match the effect of QA losses. # Previous: (loss *0) for 6 epochs, (loss *2) for 6 epochs. (Used 10 instead of 6 in EMNLP paper) # Now : (loss *1) for 12 epochs # # * 2 # Multiply by 2 because > half of the data will not have label total_loss += answer_loss losses += (answer_loss,) # return total_loss, tf.stack(losses)[tf.new_axis, ...], answer_score.detach() if not inputs["return_dict"]: output = ( lang_prediction_scores, cross_relationship_score, answer_score, ) + lxmert_output[3:] return ((total_loss,) + output) if total_loss is not None else output return TFLxmertForPreTrainingOutput( loss=total_loss, prediction_logits=lang_prediction_scores, cross_relationship_score=cross_relationship_score, question_answering_score=answer_score, language_hidden_states=lxmert_output.language_hidden_states, vision_hidden_states=lxmert_output.vision_hidden_states, language_attentions=lxmert_output.language_attentions, vision_attentions=lxmert_output.vision_attentions, cross_encoder_attentions=lxmert_output.cross_encoder_attentions, )