Source code for transformers.modeling_electra

# coding=utf-8
# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ELECTRA model. """

import math
import os
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss

from .activations import ACT2FN, get_activation
from .configuration_electra import ElectraConfig
from .file_utils import (
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_callable,
    replace_return_docstrings,
)
from .modeling_outputs import (
    BaseModelOutput,
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
from .modeling_utils import (
    PreTrainedModel,
    SequenceSummary,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)
from .utils import logging


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "ElectraConfig"
_TOKENIZER_FOR_DOC = "ElectraTokenizer"

ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "google/electra-small-generator",
    "google/electra-base-generator",
    "google/electra-large-generator",
    "google/electra-small-discriminator",
    "google/electra-base-discriminator",
    "google/electra-large-discriminator",
    # See all ELECTRA models at https://huggingface.co/models?filter=electra
]


def load_tf_weights_in_electra(model, config, tf_checkpoint_path, discriminator_or_generator="discriminator"):
    """Load tf checkpoints in a pytorch model."""
    try:
        import re

        import numpy as np
        import tensorflow as tf
    except ImportError:
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)
    for name, array in zip(names, arrays):
        original_name: str = name

        try:
            if isinstance(model, ElectraForMaskedLM):
                name = name.replace("electra/embeddings/", "generator/embeddings/")

            if discriminator_or_generator == "generator":
                name = name.replace("electra/", "discriminator/")
                name = name.replace("generator/", "electra/")

            name = name.replace("dense_1", "dense_prediction")
            name = name.replace("generator_predictions/output_bias", "generator_lm_head/bias")

            name = name.split("/")
            # print(original_name, name)
            # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
            # which are not required for using pretrained model
            if any(n in ["global_step", "temperature"] for n in name):
                logger.info("Skipping {}".format(original_name))
                continue
            pointer = model
            for m_name in name:
                if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
                    scope_names = re.split(r"_(\d+)", m_name)
                else:
                    scope_names = [m_name]
                if scope_names[0] == "kernel" or scope_names[0] == "gamma":
                    pointer = getattr(pointer, "weight")
                elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
                    pointer = getattr(pointer, "bias")
                elif scope_names[0] == "output_weights":
                    pointer = getattr(pointer, "weight")
                elif scope_names[0] == "squad":
                    pointer = getattr(pointer, "classifier")
                else:
                    pointer = getattr(pointer, scope_names[0])
                if len(scope_names) >= 2:
                    num = int(scope_names[1])
                    pointer = pointer[num]
            if m_name.endswith("_embeddings"):
                pointer = getattr(pointer, "weight")
            elif m_name == "kernel":
                array = np.transpose(array)
            try:
                assert (
                    pointer.shape == array.shape
                ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
            print("Initialize PyTorch weight {}".format(name), original_name)
            pointer.data = torch.from_numpy(array)
        except AttributeError as e:
            print("Skipping {}".format(original_name), name, e)
            continue
    return model


class ElectraEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))

    # Copied from transformers.modeling_bert.BertEmbeddings.forward
    def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
            position_ids = self.position_ids[:, :seq_length]

        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


# Copied from transformers.modeling_bert.BertSelfAttention with Bert->Electra
class ElectraSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
    ):
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        if encoder_hidden_states is not None:
            mixed_key_layer = self.key(encoder_hidden_states)
            mixed_value_layer = self.value(encoder_hidden_states)
            attention_mask = encoder_attention_mask
        else:
            mixed_key_layer = self.key(hidden_states)
            mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in ElectraModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
        return outputs


# Copied from transformers.modeling_bert.BertSelfOutput
class ElectraSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


# Copied from transformers.modeling_bert.BertAttention with Bert->Electra
class ElectraAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = ElectraSelfAttention(config)
        self.output = ElectraSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
    ):
        self_outputs = self.self(
            hidden_states,
            attention_mask,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            output_attentions,
        )
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


# Copied from transformers.modeling_bert.BertIntermediate
class ElectraIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


# Copied from transformers.modeling_bert.BertOutput
class ElectraOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


# Copied from transformers.modeling_bert.BertLayer with Bert->Electra
class ElectraLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = ElectraAttention(config)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
            assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
            self.crossattention = ElectraAttention(config)
        self.intermediate = ElectraIntermediate(config)
        self.output = ElectraOutput(config)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
    ):
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
        )
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        if self.is_decoder and encoder_hidden_states is not None:
            assert hasattr(
                self, "crossattention"
            ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                output_attentions,
            )
            attention_output = cross_attention_outputs[0]
            outputs = outputs + cross_attention_outputs[1:]  # add cross attentions if we output attention weights

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )
        outputs = (layer_output,) + outputs
        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


# Copied from transformers.modeling_bert.BertEncoder with Bert->Electra
class ElectraEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([ElectraLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=False,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None

            if getattr(self.config, "gradient_checkpointing", False):

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    output_attentions,
                )
            hidden_states = layer_outputs[0]
            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
        )


class ElectraDiscriminatorPredictions(nn.Module):
    """Prediction module for the discriminator, made up of two dense layers."""

    def __init__(self, config):
        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dense_prediction = nn.Linear(config.hidden_size, 1)
        self.config = config

    def forward(self, discriminator_hidden_states):
        hidden_states = self.dense(discriminator_hidden_states)
        hidden_states = get_activation(self.config.hidden_act)(hidden_states)
        logits = self.dense_prediction(hidden_states).squeeze()

        return logits


class ElectraGeneratorPredictions(nn.Module):
    """Prediction module for the generator, made up of two dense layers."""

    def __init__(self, config):
        super().__init__()

        self.LayerNorm = nn.LayerNorm(config.embedding_size)
        self.dense = nn.Linear(config.hidden_size, config.embedding_size)

    def forward(self, generator_hidden_states):
        hidden_states = self.dense(generator_hidden_states)
        hidden_states = get_activation("gelu")(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)

        return hidden_states


class ElectraPreTrainedModel(PreTrainedModel):
    """An abstract class to handle weights initialization and
    a simple interface for downloading and loading pretrained models.
    """

    config_class = ElectraConfig
    load_tf_weights = load_tf_weights_in_electra
    base_model_prefix = "electra"
    authorized_missing_keys = [r"position_ids"]

    # Copied from transformers.modeling_bert.BertPreTrainedModel._init_weights
    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


[docs]@dataclass class ElectraForPreTrainingOutput(ModelOutput): """ Output type of :class:`~transformers.ElectraForPreTrainingModel`. Args: loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`): Total loss of the ELECTRA objective. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`): Prediction scores of the head (scores for each token before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
ELECTRA_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.ElectraConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ ELECTRA_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.ElectraTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **maked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """
[docs]@add_start_docstrings( "The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to " "the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the " "hidden size and embedding size are different." "" "Both the generator and discriminator checkpoints may be loaded into this model.", ELECTRA_START_DOCSTRING, ) class ElectraModel(ElectraPreTrainedModel): def __init__(self, config): super().__init__(config) self.embeddings = ElectraEmbeddings(config) if config.embedding_size != config.hidden_size: self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size) self.encoder = ElectraEncoder(config) self.config = config self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads)
[docs] @add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="google/electra-small-discriminator", output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) hidden_states = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) if hasattr(self, "embeddings_project"): hidden_states = self.embeddings_project(hidden_states) hidden_states = self.encoder( hidden_states, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return hidden_states
class ElectraClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = get_activation("gelu")(x) # although BERT uses tanh here, it seems Electra authors used gelu here x = self.dropout(x) x = self.out_proj(x) return x
[docs]@add_start_docstrings( """ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ELECTRA_START_DOCSTRING, ) class ElectraForSequenceClassification(ElectraPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.electra = ElectraModel(config) self.classifier = ElectraClassificationHead(config) self.init_weights()
[docs] @add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="google/electra-small-discriminator", output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict discriminator_hidden_states = self.electra( input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict, ) sequence_output = discriminator_hidden_states[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + discriminator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=discriminator_hidden_states.hidden_states, attentions=discriminator_hidden_states.attentions, )
[docs]@add_start_docstrings( """ Electra model with a binary classification head on top as used during pre-training for identifying generated tokens. It is recommended to load the discriminator checkpoint into that model.""", ELECTRA_START_DOCSTRING, ) class ElectraForPreTraining(ElectraPreTrainedModel): def __init__(self, config): super().__init__(config) self.electra = ElectraModel(config) self.discriminator_predictions = ElectraDiscriminatorPredictions(config) self.init_weights()
[docs] @add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=ElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`): Labels for computing the ELECTRA loss. Input should be a sequence of tokens (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``: - 0 indicates the token is an original token, - 1 indicates the token was replaced. Returns: Examples:: >>> from transformers import ElectraTokenizer, ElectraForPreTraining >>> import torch >>> tokenizer = ElectraTokenizer.from_pretrained('google/electra-small-discriminator') >>> model = ElectraForPreTraining.from_pretrained('google/electra-small-discriminator') >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 >>> logits = model(input_ids).logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict discriminator_hidden_states = self.electra( input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict, ) discriminator_sequence_output = discriminator_hidden_states[0] logits = self.discriminator_predictions(discriminator_sequence_output) loss = None if labels is not None: loss_fct = nn.BCEWithLogitsLoss() if attention_mask is not None: active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1 active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss] active_labels = labels[active_loss] loss = loss_fct(active_logits, active_labels.float()) else: loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float()) if not return_dict: output = (logits,) + discriminator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return ElectraForPreTrainingOutput( loss=loss, logits=logits, hidden_states=discriminator_hidden_states.hidden_states, attentions=discriminator_hidden_states.attentions, )
[docs]@add_start_docstrings( """ Electra model with a language modeling head on top. Even though both the discriminator and generator may be loaded into this model, the generator is the only model of the two to have been trained for the masked language modeling task.""", ELECTRA_START_DOCSTRING, ) class ElectraForMaskedLM(ElectraPreTrainedModel): def __init__(self, config): super().__init__(config) self.electra = ElectraModel(config) self.generator_predictions = ElectraGeneratorPredictions(config) self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size) self.init_weights() def get_output_embeddings(self): return self.generator_lm_head
[docs] @add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="google/electra-small-discriminator", output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): Used to hide legacy arguments that have been deprecated. """ if "masked_lm_labels" in kwargs: warnings.warn( "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.", FutureWarning, ) labels = kwargs.pop("masked_lm_labels") assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}." return_dict = return_dict if return_dict is not None else self.config.use_return_dict generator_hidden_states = self.electra( input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict, ) generator_sequence_output = generator_hidden_states[0] prediction_scores = self.generator_predictions(generator_sequence_output) prediction_scores = self.generator_lm_head(prediction_scores) loss = None # Masked language modeling softmax layer if labels is not None: loss_fct = nn.CrossEntropyLoss() # -100 index = padding token loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + generator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return MaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=generator_hidden_states.hidden_states, attentions=generator_hidden_states.attentions, )
[docs]@add_start_docstrings( """ Electra model with a token classification head on top. Both the discriminator and generator may be loaded into this model.""", ELECTRA_START_DOCSTRING, ) class ElectraForTokenClassification(ElectraPreTrainedModel): def __init__(self, config): super().__init__(config) self.electra = ElectraModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights()
[docs] @add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="google/electra-small-discriminator", output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict discriminator_hidden_states = self.electra( input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict, ) discriminator_sequence_output = discriminator_hidden_states[0] discriminator_sequence_output = self.dropout(discriminator_sequence_output) logits = self.classifier(discriminator_sequence_output) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.config.num_labels)[active_loss] active_labels = labels.view(-1)[active_loss] loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + discriminator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=discriminator_hidden_states.hidden_states, attentions=discriminator_hidden_states.attentions, )
[docs]@add_start_docstrings( """ ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""", ELECTRA_START_DOCSTRING, ) class ElectraForQuestionAnswering(ElectraPreTrainedModel): config_class = ElectraConfig base_model_prefix = "electra" def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.electra = ElectraModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights()
[docs] @add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="google/electra-small-discriminator", output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict discriminator_hidden_states = self.electra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = discriminator_hidden_states[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = ( start_logits, end_logits, ) + discriminator_hidden_states[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=discriminator_hidden_states.hidden_states, attentions=discriminator_hidden_states.attentions, )
[docs]@add_start_docstrings( """ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ELECTRA_START_DOCSTRING, ) class ElectraForMultipleChoice(ElectraPreTrainedModel): def __init__(self, config): super().__init__(config) self.electra = ElectraModel(config) self.sequence_summary = SequenceSummary(config) self.classifier = nn.Linear(config.hidden_size, 1) self.init_weights()
[docs] @add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="google/electra-small-discriminator", output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) discriminator_hidden_states = self.electra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = discriminator_hidden_states[0] pooled_output = self.sequence_summary(sequence_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + discriminator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=discriminator_hidden_states.hidden_states, attentions=discriminator_hidden_states.attentions, )