Source code for transformers.training_args_tf

import warnings
from dataclasses import dataclass, field
from typing import Tuple

from .file_utils import cached_property, is_tf_available, tf_required
from .training_args import TrainingArguments
from .utils import logging

logger = logging.get_logger(__name__)

if is_tf_available():
    import tensorflow as tf

[docs]@dataclass class TFTrainingArguments(TrainingArguments): """ TrainingArguments is the subset of the arguments we use in our example scripts **which relate to the training loop itself**. Using :class:`~transformers.HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. Parameters: output_dir (:obj:`str`): The output directory where the model predictions and checkpoints will be written. overwrite_output_dir (:obj:`bool`, `optional`, defaults to :obj:`False`): If :obj:`True`, overwrite the content of the output directory. Use this to continue training if :obj:`output_dir` points to a checkpoint directory. do_train (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to run training or not. do_eval (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to run evaluation on the dev set or not. do_predict (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to run predictions on the test set or not. evaluate_during_training (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to run evaluation during training at each logging step or not. per_device_train_batch_size (:obj:`int`, `optional`, defaults to 8): The batch size per GPU/TPU core/CPU for training. per_device_eval_batch_size (:obj:`int`, `optional`, defaults to 8): The batch size per GPU/TPU core/CPU for evaluation. gradient_accumulation_steps: (:obj:`int`, `optional`, defaults to 1): Number of updates steps to accumulate the gradients for, before performing a backward/update pass. .. warning:: When using gradient accumulation, one step is counted as one step with backward pass. Therefore, logging, evaluation, save will be conducted every ``gradient_accumulation_steps * xxx_step`` training examples. learning_rate (:obj:`float`, `optional`, defaults to 5e-5): The initial learning rate for Adam. weight_decay (:obj:`float`, `optional`, defaults to 0): The weight decay to apply (if not zero). adam_epsilon (:obj:`float`, `optional`, defaults to 1e-8): Epsilon for the Adam optimizer. max_grad_norm (:obj:`float`, `optional`, defaults to 1.0): Maximum gradient norm (for gradient clipping). num_train_epochs(:obj:`float`, `optional`, defaults to 3.0): Total number of training epochs to perform. max_steps (:obj:`int`, `optional`, defaults to -1): If set to a positive number, the total number of training steps to perform. Overrides :obj:`num_train_epochs`. warmup_steps (:obj:`int`, `optional`, defaults to 0): Number of steps used for a linear warmup from 0 to :obj:`learning_rate`. logging_dir (:obj:`str`, `optional`): Tensorboard log directory. Will default to `runs/**CURRENT_DATETIME_HOSTNAME**`. logging_first_step (:obj:`bool`, `optional`, defaults to :obj:`False`): Wheter to log and evalulate the first :obj:`global_step` or not. logging_steps (:obj:`int`, `optional`, defaults to 500): Number of update steps between two logs. save_steps (:obj:`int`, `optional`, defaults to 500): Number of updates steps before two checkpoint saves. save_total_limit (:obj:`int`, `optional`): If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in :obj:`output_dir`. no_cuda (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to not use CUDA even when it is available or not. seed (:obj:`int`, `optional`, defaults to 42): Random seed for initialization. fp16 (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to use 16-bit (mixed) precision training (through NVIDIA apex) instead of 32-bit training. fp16_opt_level (:obj:`str`, `optional`, defaults to 'O1'): For :obj:`fp16` training, apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details on the `apex documentation <>`__. local_rank (:obj:`int`, `optional`, defaults to -1): During distributed training, the rank of the process. tpu_num_cores (:obj:`int`, `optional`): When training on TPU, the mumber of TPU cores (automatically passed by launcher script). debug (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to activate the trace to record computation graphs and profiling information or not. dataloader_drop_last (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size) or not. eval_steps (:obj:`int`, `optional`, defaults to 1000): Number of update steps before two evaluations. past_index (:obj:`int`, `optional`, defaults to -1): Some models like :doc:`TransformerXL <../model_doc/transformerxl>` or :doc`XLNet <../model_doc/xlnet>` can make use of the past hidden states for their predictions. If this argument is set to a positive int, the ``Trainer`` will use the corresponding output (usually index 2) as the past state and feed it to the model at the next training step under the keyword argument ``mems``. tpu_name (:obj:`str`, `optional`): The name of the TPU the process is running on. run_name (:obj:`str`, `optional`): A descriptor for the run. Notably used for wandb logging. xla (:obj:`bool`, `optional`): Whether to activate the XLA compilation or not. """ tpu_name: str = field( default=None, metadata={"help": "Name of TPU"}, ) xla: bool = field(default=False, metadata={"help": "Whether to activate the XLA compilation or not"}) @cached_property @tf_required def _setup_strategy(self) -> Tuple["tf.distribute.Strategy", int]:"Tensorflow: setting up strategy") if self.args.xla: tf.config.optimizer.set_jit(True) gpus = tf.config.list_physical_devices("GPU") # Set to float16 at first if self.fp16: policy = tf.keras.mixed_precision.experimental.Policy("mixed_float16") tf.keras.mixed_precision.experimental.set_policy(policy) if self.no_cuda: strategy = tf.distribute.OneDeviceStrategy(device="/cpu:0") else: try: if self.tpu_name: tpu = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name) else: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: tpu = None if tpu: # Set to bfloat16 in case of TPU if self.fp16: policy = tf.keras.mixed_precision.experimental.Policy("mixed_bfloat16") tf.keras.mixed_precision.experimental.set_policy(policy) tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) elif len(gpus) == 0: strategy = tf.distribute.OneDeviceStrategy(device="/cpu:0") elif len(gpus) == 1: strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0") elif len(gpus) > 1: # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` strategy = tf.distribute.MirroredStrategy() else: raise ValueError("Cannot find the proper strategy please check your environment properties.") return strategy @property @tf_required def strategy(self) -> "tf.distribute.Strategy": """ The strategy used for distributed training. """ return self._setup_strategy @property @tf_required def n_replicas(self) -> int: """ The number of replicas (CPUs, GPUs or TPU cores) used in this training. """ return self._setup_strategy.num_replicas_in_sync @property def train_batch_size(self) -> int: """ The actual batch size for training (may differ from :obj:`per_gpu_train_batch_size` in distributed training). """ if self.per_gpu_train_batch_size: logger.warning( "Using deprecated `--per_gpu_train_batch_size` argument which will be removed in a future " "version. Using `--per_device_train_batch_size` is preferred." ) per_device_batch_size = self.per_gpu_train_batch_size or self.per_device_train_batch_size return per_device_batch_size * self.n_replicas @property def eval_batch_size(self) -> int: """ The actual batch size for evaluation (may differ from :obj:`per_gpu_eval_batch_size` in distributed training). """ if self.per_gpu_eval_batch_size: logger.warning( "Using deprecated `--per_gpu_eval_batch_size` argument which will be removed in a future " "version. Using `--per_device_eval_batch_size` is preferred." ) per_device_batch_size = self.per_gpu_eval_batch_size or self.per_device_eval_batch_size return per_device_batch_size * self.n_replicas @property @tf_required def n_gpu(self) -> int: """ The number of replicas (CPUs, GPUs or TPU cores) used in this training. """ warnings.warn( "The n_gpu argument is deprecated and will be removed in a future version, use n_replicas instead.", FutureWarning, ) return self._setup_strategy.num_replicas_in_sync