Source code for transformers.modeling_tf_distilbert

# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 DistilBERT model
"""


import math

import tensorflow as tf

from .activations_tf import get_tf_activation
from .configuration_distilbert import DistilBertConfig
from .file_utils import (
    MULTIPLE_CHOICE_DUMMY_INPUTS,
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_callable,
)
from .modeling_tf_outputs import (
    TFBaseModelOutput,
    TFMaskedLMOutput,
    TFMultipleChoiceModelOutput,
    TFQuestionAnsweringModelOutput,
    TFSequenceClassifierOutput,
    TFTokenClassifierOutput,
)
from .modeling_tf_utils import (
    TFMaskedLanguageModelingLoss,
    TFMultipleChoiceLoss,
    TFPreTrainedModel,
    TFQuestionAnsweringLoss,
    TFSequenceClassificationLoss,
    TFSharedEmbeddings,
    TFTokenClassificationLoss,
    get_initializer,
    keras_serializable,
    shape_list,
)
from .tokenization_utils import BatchEncoding
from .utils import logging


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "DistilBertConfig"
_TOKENIZER_FOR_DOC = "DistilBertTokenizer"

TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "distilbert-base-uncased",
    "distilbert-base-uncased-distilled-squad",
    "distilbert-base-cased",
    "distilbert-base-cased-distilled-squad",
    "distilbert-base-multilingual-cased",
    "distilbert-base-uncased-finetuned-sst-2-english",
    # See all DistilBERT models at https://huggingface.co/models?filter=distilbert
]


class TFEmbeddings(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.vocab_size = config.vocab_size
        self.dim = config.dim
        self.initializer_range = config.initializer_range
        self.word_embeddings = TFSharedEmbeddings(
            config.vocab_size, config.dim, initializer_range=config.initializer_range, name="word_embeddings"
        )  # padding_idx=0)
        self.position_embeddings = tf.keras.layers.Embedding(
            config.max_position_embeddings,
            config.dim,
            embeddings_initializer=get_initializer(config.initializer_range),
            name="position_embeddings",
        )

        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=1e-12, name="LayerNorm")
        self.dropout = tf.keras.layers.Dropout(config.dropout)

    def build(self, input_shape):
        """Build shared word embedding layer """
        with tf.name_scope("word_embeddings"):
            # Create and initialize weights. The random normal initializer was chosen
            # arbitrarily, and works well.
            self.word_embeddings = self.add_weight(
                "weight", shape=[self.vocab_size, self.dim], initializer=get_initializer(self.initializer_range)
            )
        super().build(input_shape)

    def call(self, input_ids=None, position_ids=None, inputs_embeds=None, mode="embedding", training=False):
        """Get token embeddings of inputs.
        Args:
            inputs: list of two int64 tensors with shape [batch_size, length]: (input_ids, position_ids)
            mode: string, a valid value is one of "embedding" and "linear".
        Returns:
            outputs: (1) If mode == "embedding", output embedding tensor, float32 with
                shape [batch_size, length, embedding_size]; (2) mode == "linear", output
                linear tensor, float32 with shape [batch_size, length, vocab_size].
        Raises:
            ValueError: if mode is not valid.

        Shared weights logic adapted from
            https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
        """
        if mode == "embedding":
            return self._embedding(input_ids, position_ids, inputs_embeds, training=training)
        elif mode == "linear":
            return self._linear(input_ids)
        else:
            raise ValueError("mode {} is not valid.".format(mode))

    def _embedding(self, input_ids, position_ids, inputs_embeds, training=False):
        """
        Parameters
        ----------
        input_ids: tf.Tensor(bs, max_seq_length)
            The token ids to embed.

        Outputs
        -------
        embeddings: tf.Tensor(bs, max_seq_length, dim)
            The embedded tokens (plus position embeddings, no token_type embeddings)
        """
        assert not (input_ids is None and inputs_embeds is None)

        if input_ids is not None:
            seq_length = shape_list(input_ids)[1]
        else:
            seq_length = shape_list(inputs_embeds)[1]

        if position_ids is None:
            position_ids = tf.range(seq_length, dtype=tf.int32)[tf.newaxis, :]

        if inputs_embeds is None:
            inputs_embeds = tf.gather(self.word_embeddings, input_ids)
        position_embeddings = tf.cast(
            self.position_embeddings(position_ids), inputs_embeds.dtype
        )  # (bs, max_seq_length, dim)

        embeddings = inputs_embeds + position_embeddings  # (bs, max_seq_length, dim)
        embeddings = self.LayerNorm(embeddings)  # (bs, max_seq_length, dim)
        embeddings = self.dropout(embeddings, training=training)  # (bs, max_seq_length, dim)
        return embeddings

    def _linear(self, inputs):
        """Computes logits by running inputs through a linear layer.
        Args:
            inputs: A float32 tensor with shape [batch_size, length, hidden_size]
        Returns:
            float32 tensor with shape [batch_size, length, vocab_size].
        """
        batch_size = shape_list(inputs)[0]
        length = shape_list(inputs)[1]

        x = tf.reshape(inputs, [-1, self.dim])
        logits = tf.matmul(x, self.word_embeddings, transpose_b=True)

        return tf.reshape(logits, [batch_size, length, self.vocab_size])


class TFMultiHeadSelfAttention(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)

        self.n_heads = config.n_heads
        self.dim = config.dim
        self.dropout = tf.keras.layers.Dropout(config.attention_dropout)
        self.output_attentions = config.output_attentions

        assert self.dim % self.n_heads == 0, f"Hidden size {self.dim} not dividable by number of heads {self.n_heads}"

        self.q_lin = tf.keras.layers.Dense(
            config.dim, kernel_initializer=get_initializer(config.initializer_range), name="q_lin"
        )
        self.k_lin = tf.keras.layers.Dense(
            config.dim, kernel_initializer=get_initializer(config.initializer_range), name="k_lin"
        )
        self.v_lin = tf.keras.layers.Dense(
            config.dim, kernel_initializer=get_initializer(config.initializer_range), name="v_lin"
        )
        self.out_lin = tf.keras.layers.Dense(
            config.dim, kernel_initializer=get_initializer(config.initializer_range), name="out_lin"
        )

        self.pruned_heads = set()

    def prune_heads(self, heads):
        raise NotImplementedError

    def call(self, query, key, value, mask, head_mask, output_attentions, training=False):
        """
        Parameters
        ----------
        query: tf.Tensor(bs, seq_length, dim)
        key: tf.Tensor(bs, seq_length, dim)
        value: tf.Tensor(bs, seq_length, dim)
        mask: tf.Tensor(bs, seq_length)

        Outputs
        -------
        weights: tf.Tensor(bs, n_heads, seq_length, seq_length)
            Attention weights
        context: tf.Tensor(bs, seq_length, dim)
            Contextualized layer. Optional: only if `output_attentions=True`
        """
        bs, q_length, dim = shape_list(query)
        k_length = shape_list(key)[1]
        # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
        # assert key.size() == value.size()

        dim_per_head = self.dim // self.n_heads

        mask_reshape = [bs, 1, 1, k_length]

        def shape(x):
            """ separate heads """
            return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3))

        def unshape(x):
            """ group heads """
            return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head))

        q = shape(self.q_lin(query))  # (bs, n_heads, q_length, dim_per_head)
        k = shape(self.k_lin(key))  # (bs, n_heads, k_length, dim_per_head)
        v = shape(self.v_lin(value))  # (bs, n_heads, k_length, dim_per_head)

        q = q / math.sqrt(dim_per_head)  # (bs, n_heads, q_length, dim_per_head)
        scores = tf.matmul(q, k, transpose_b=True)  # (bs, n_heads, q_length, k_length)
        mask = tf.reshape(mask, mask_reshape)  # (bs, n_heads, qlen, klen)
        # scores.masked_fill_(mask, -float('inf'))            # (bs, n_heads, q_length, k_length)

        scores_dtype = scores.dtype
        # calculate `scores` in `tf.float32` to avoid numeric overflow
        scores = tf.cast(scores, dtype=tf.float32) - 1e30 * (1.0 - tf.cast(mask, dtype=tf.float32))

        weights = tf.cast(tf.nn.softmax(scores, axis=-1), dtype=scores_dtype)  # (bs, n_heads, qlen, klen)
        weights = self.dropout(weights, training=training)  # (bs, n_heads, qlen, klen)

        # Mask heads if we want to
        if head_mask is not None:
            weights = weights * head_mask

        context = tf.matmul(weights, v)  # (bs, n_heads, qlen, dim_per_head)
        context = unshape(context)  # (bs, q_length, dim)
        context = self.out_lin(context)  # (bs, q_length, dim)

        if output_attentions:
            return (context, weights)
        else:
            return (context,)


class TFFFN(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.dropout = tf.keras.layers.Dropout(config.dropout)
        self.lin1 = tf.keras.layers.Dense(
            config.hidden_dim, kernel_initializer=get_initializer(config.initializer_range), name="lin1"
        )
        self.lin2 = tf.keras.layers.Dense(
            config.dim, kernel_initializer=get_initializer(config.initializer_range), name="lin2"
        )
        assert config.activation in ["relu", "gelu"], "activation ({}) must be in ['relu', 'gelu']".format(
            config.activation
        )
        self.activation = get_tf_activation(config.activation)

    def call(self, input, training=False):
        x = self.lin1(input)
        x = self.activation(x)
        x = self.lin2(x)
        x = self.dropout(x, training=training)
        return x


class TFTransformerBlock(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)

        self.n_heads = config.n_heads
        self.dim = config.dim
        self.hidden_dim = config.hidden_dim
        self.dropout = tf.keras.layers.Dropout(config.dropout)
        self.activation = config.activation
        self.output_attentions = config.output_attentions

        assert (
            config.dim % config.n_heads == 0
        ), f"Hidden size {config.dim} not dividable by number of heads {config.n_heads}"

        self.attention = TFMultiHeadSelfAttention(config, name="attention")
        self.sa_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-12, name="sa_layer_norm")

        self.ffn = TFFFN(config, name="ffn")
        self.output_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-12, name="output_layer_norm")

    def call(self, x, attn_mask, head_mask, output_attentions, training=False):  # removed: src_enc=None, src_len=None
        """
        Parameters
        ----------
        x: tf.Tensor(bs, seq_length, dim)
        attn_mask: tf.Tensor(bs, seq_length)

        Outputs
        -------
        sa_weights: tf.Tensor(bs, n_heads, seq_length, seq_length)
            The attention weights
        ffn_output: tf.Tensor(bs, seq_length, dim)
            The output of the transformer block contextualization.
        """
        # Self-Attention
        sa_output = self.attention(x, x, x, attn_mask, head_mask, output_attentions, training=training)
        if output_attentions:
            sa_output, sa_weights = sa_output  # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length)
        else:  # To handle these `output_attentions` or `output_hidden_states` cases returning tuples
            # assert type(sa_output) == tuple
            sa_output = sa_output[0]
        sa_output = self.sa_layer_norm(sa_output + x)  # (bs, seq_length, dim)

        # Feed Forward Network
        ffn_output = self.ffn(sa_output, training=training)  # (bs, seq_length, dim)
        ffn_output = self.output_layer_norm(ffn_output + sa_output)  # (bs, seq_length, dim)

        output = (ffn_output,)
        if output_attentions:
            output = (sa_weights,) + output
        return output


class TFTransformer(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.n_layers = config.n_layers
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions

        self.layer = [TFTransformerBlock(config, name="layer_._{}".format(i)) for i in range(config.n_layers)]

    def call(self, x, attn_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False):
        """
        Parameters
        ----------
        x: tf.Tensor(bs, seq_length, dim)
            Input sequence embedded.
        attn_mask: tf.Tensor(bs, seq_length)
            Attention mask on the sequence.

        Outputs
        -------
        hidden_state: tf.Tensor(bs, seq_length, dim)
            Sequence of hiddens states in the last (top) layer
        all_hidden_states: Tuple[tf.Tensor(bs, seq_length, dim)]
            Tuple of length n_layers with the hidden states from each layer.
            Optional: only if output_hidden_states=True
        all_attentions: Tuple[tf.Tensor(bs, n_heads, seq_length, seq_length)]
            Tuple of length n_layers with the attention weights from each layer
            Optional: only if output_attentions=True
        """
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        hidden_state = x
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_state,)

            layer_outputs = layer_module(hidden_state, attn_mask, head_mask[i], output_attentions, training=training)
            hidden_state = layer_outputs[-1]

            if output_attentions:
                assert len(layer_outputs) == 2
                attentions = layer_outputs[0]
                all_attentions = all_attentions + (attentions,)
            else:
                assert len(layer_outputs) == 1, f"Incorrect number of outputs {len(layer_outputs)} instead of 1"

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_state,)

        if not return_dict:
            return tuple(v for v in [hidden_state, all_hidden_states, all_attentions] if v is not None)
        return TFBaseModelOutput(
            last_hidden_state=hidden_state, hidden_states=all_hidden_states, attentions=all_attentions
        )


@keras_serializable
class TFDistilBertMainLayer(tf.keras.layers.Layer):
    config_class = DistilBertConfig

    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.num_hidden_layers = config.num_hidden_layers
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
        self.return_dict = config.use_return_dict

        self.embeddings = TFEmbeddings(config, name="embeddings")  # Embeddings
        self.transformer = TFTransformer(config, name="transformer")  # Encoder

    def get_input_embeddings(self):
        return self.embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value
        self.embeddings.vocab_size = value.shape[0]

    def _prune_heads(self, heads_to_prune):
        raise NotImplementedError

    def call(
        self,
        inputs,
        attention_mask=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        training=False,
    ):
        if isinstance(inputs, (tuple, list)):
            input_ids = inputs[0]
            attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
            head_mask = inputs[2] if len(inputs) > 2 else head_mask
            inputs_embeds = inputs[3] if len(inputs) > 3 else inputs_embeds
            output_attentions = inputs[4] if len(inputs) > 4 else output_attentions
            output_hidden_states = inputs[5] if len(inputs) > 5 else output_hidden_states
            return_dict = inputs[6] if len(inputs) > 6 else return_dict
            assert len(inputs) <= 7, "Too many inputs."
        elif isinstance(inputs, (dict, BatchEncoding)):
            input_ids = inputs.get("input_ids")
            attention_mask = inputs.get("attention_mask", attention_mask)
            head_mask = inputs.get("head_mask", head_mask)
            inputs_embeds = inputs.get("inputs_embeds", inputs_embeds)
            output_attentions = inputs.get("output_attentions", output_attentions)
            output_hidden_states = inputs.get("output_hidden_states", output_hidden_states)
            return_dict = inputs.get("return_dict", return_dict)
            assert len(inputs) <= 7, "Too many inputs."
        else:
            input_ids = inputs

        output_attentions = output_attentions if output_attentions is not None else self.output_attentions
        output_hidden_states = output_hidden_states if output_hidden_states is not None else self.output_hidden_states
        return_dict = return_dict if return_dict is not None else self.return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = shape_list(input_ids)
        elif inputs_embeds is not None:
            input_shape = shape_list(inputs_embeds)[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if attention_mask is None:
            attention_mask = tf.ones(input_shape)  # (bs, seq_length)

        attention_mask = tf.cast(attention_mask, dtype=tf.float32)

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if head_mask is not None:
            raise NotImplementedError
        else:

            head_mask = [None] * self.num_hidden_layers

        embedding_output = self.embeddings(input_ids, inputs_embeds=inputs_embeds)  # (bs, seq_length, dim)
        tfmr_output = self.transformer(
            embedding_output,
            attention_mask,
            head_mask,
            output_attentions,
            output_hidden_states,
            return_dict,
            training=training,
        )

        return tfmr_output  # last-layer hidden-state, (all hidden_states), (all attentions)


# INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL #
class TFDistilBertPreTrainedModel(TFPreTrainedModel):
    """An abstract class to handle weights initialization and
    a simple interface for downloading and loading pretrained models.
    """

    config_class = DistilBertConfig
    base_model_prefix = "distilbert"


DISTILBERT_START_DOCSTRING = r"""
    This model is a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ sub-class.
    Use it as a regular TF 2.0 Keras Model and
    refer to the TF 2.0 documentation for all matter related to general usage and behavior.

    .. note::

        TF 2.0 models accepts two formats as inputs:

            - having all inputs as keyword arguments (like PyTorch models), or
            - having all inputs as a list, tuple or dict in the first positional arguments.

        This second option is useful when using :obj:`tf.keras.Model.fit()` method which currently requires having
        all the tensors in the first argument of the model call function: :obj:`model(inputs)`.

        If you choose this second option, there are three possibilities you can use to gather all the input Tensors
        in the first positional argument :

        - a single Tensor with input_ids only and nothing else: :obj:`model(inputs_ids)`
        - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
          :obj:`model([input_ids, attention_mask])`
        - a dictionary with one or several input Tensors associated to the input names given in the docstring:
          :obj:`model({'input_ids': input_ids})`

    Parameters:
        config (:class:`~transformers.DistilBertConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

DISTILBERT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`transformers.BertTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
            :func:`transformers.PreTrainedTokenizer.__call__` for details.

            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.

            `What are attention masks? <../glossary.html#attention-mask>`__
        head_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
        inputs_embeds (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, embedding_dim)`, `optional`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
        training (:obj:`boolean`, `optional`, defaults to :obj:`False`):
            Whether to activate dropout modules (if set to :obj:`True`) during training or to de-activate them
            (if set to :obj:`False`) for evaluation.
        output_attentions (:obj:`bool`, `optional`):
            If set to ``True``, the attentions tensors of all attention layers are returned. See ``attentions`` under returned tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            If set to ``True``, the hidden states of all layers are returned. See ``hidden_states`` under returned tensors for more detail.
        return_dict (:obj:`bool`, `optional`):
            If set to ``True``, the model will return a :class:`~transformers.file_utils.ModelOutput` instead of a
            plain tuple.
"""


[docs]@add_start_docstrings( "The bare DistilBERT encoder/transformer outputing raw hidden-states without any specific head on top.", DISTILBERT_START_DOCSTRING, ) class TFDistilBertModel(TFDistilBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.distilbert = TFDistilBertMainLayer(config, name="distilbert") # Embeddings
[docs] @add_start_docstrings_to_callable(DISTILBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="distilbert-base-uncased", output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call(self, inputs, **kwargs): outputs = self.distilbert(inputs, **kwargs) return outputs
class TFDistilBertLMHead(tf.keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def call(self, hidden_states): hidden_states = self.input_embeddings(hidden_states, mode="linear") hidden_states = hidden_states + self.bias return hidden_states
[docs]@add_start_docstrings( """DistilBert Model with a `masked language modeling` head on top. """, DISTILBERT_START_DOCSTRING, ) class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.vocab_size = config.vocab_size self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.vocab_transform = tf.keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), name="vocab_transform" ) self.act = get_tf_activation("gelu") self.vocab_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-12, name="vocab_layer_norm") self.vocab_projector = TFDistilBertLMHead(config, self.distilbert.embeddings, name="vocab_projector")
[docs] def get_output_embeddings(self): return self.vocab_projector.input_embeddings
[docs] @add_start_docstrings_to_callable(DISTILBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="distilbert-base-uncased", output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, inputs=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` """ return_dict = return_dict if return_dict is not None else self.distilbert.return_dict if isinstance(inputs, (tuple, list)): labels = inputs[7] if len(inputs) > 7 else labels if len(inputs) > 7: inputs = inputs[:7] elif isinstance(inputs, (dict, BatchEncoding)): labels = inputs.pop("labels", labels) distilbert_output = self.distilbert( inputs, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = distilbert_output[0] # (bs, seq_length, dim) prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim) prediction_logits = self.act(prediction_logits) # (bs, seq_length, dim) prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim) prediction_logits = self.vocab_projector(prediction_logits) loss = None if labels is None else self.compute_loss(labels, prediction_logits) if not return_dict: output = (prediction_logits,) + distilbert_output[1:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, )
[docs]@add_start_docstrings( """DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, DISTILBERT_START_DOCSTRING, ) class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.pre_classifier = tf.keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), activation="relu", name="pre_classifier", ) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.dropout = tf.keras.layers.Dropout(config.seq_classif_dropout)
[docs] @add_start_docstrings_to_callable(DISTILBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="distilbert-base-uncased", output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, inputs=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in ``[0, ..., config.num_labels - 1]``. If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.distilbert.return_dict if isinstance(inputs, (tuple, list)): labels = inputs[7] if len(inputs) > 7 else labels if len(inputs) > 7: inputs = inputs[:7] elif isinstance(inputs, (dict, BatchEncoding)): labels = inputs.pop("labels", labels) distilbert_output = self.distilbert( inputs, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_state = distilbert_output[0] # (bs, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs, dim) pooled_output = self.pre_classifier(pooled_output) # (bs, dim) pooled_output = self.dropout(pooled_output, training=training) # (bs, dim) logits = self.classifier(pooled_output) # (bs, dim) loss = None if labels is None else self.compute_loss(labels, logits) if not return_dict: output = (logits,) + distilbert_output[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, )
[docs]@add_start_docstrings( """DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, DISTILBERT_START_DOCSTRING, ) class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.dropout = tf.keras.layers.Dropout(config.dropout) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" )
[docs] @add_start_docstrings_to_callable(DISTILBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="distilbert-base-uncased", output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, inputs=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ return_dict = return_dict if return_dict is not None else self.distilbert.return_dict if isinstance(inputs, (tuple, list)): labels = inputs[7] if len(inputs) > 7 else labels if len(inputs) > 7: inputs = inputs[:7] elif isinstance(inputs, (dict, BatchEncoding)): labels = inputs.pop("labels", labels) outputs = self.distilbert( inputs, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
[docs]@add_start_docstrings( """DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, DISTILBERT_START_DOCSTRING, ) class TFDistilBertForMultipleChoice(TFDistilBertPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.dropout = tf.keras.layers.Dropout(config.seq_classif_dropout) self.pre_classifier = tf.keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), activation="relu", name="pre_classifier", ) self.classifier = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @property def dummy_inputs(self): """Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)}
[docs] @add_start_docstrings_to_callable(DISTILBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="distilbert-base-uncased", output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, inputs, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above) """ if isinstance(inputs, (tuple, list)): input_ids = inputs[0] attention_mask = inputs[1] if len(inputs) > 1 else attention_mask head_mask = inputs[2] if len(inputs) > 2 else head_mask inputs_embeds = inputs[3] if len(inputs) > 3 else inputs_embeds output_attentions = inputs[4] if len(inputs) > 4 else output_attentions output_hidden_states = inputs[5] if len(inputs) > 5 else output_hidden_states return_dict = inputs[6] if len(inputs) > 6 else return_dict labels = inputs[7] if len(inputs) > 7 else labels assert len(inputs) <= 8, "Too many inputs." elif isinstance(inputs, (dict, BatchEncoding)): input_ids = inputs.get("input_ids") attention_mask = inputs.get("attention_mask", attention_mask) head_mask = inputs.get("head_mask", head_mask) inputs_embeds = inputs.get("inputs_embeds", inputs_embeds) output_attentions = inputs.get("output_attentions", output_attentions) output_hidden_states = inputs.get("output_hidden_states", output_hidden_states) return_dict = inputs.get("return_dict", return_dict) labels = inputs.get("labels", labels) assert len(inputs) <= 8, "Too many inputs." else: input_ids = inputs return_dict = return_dict if return_dict is not None else self.distilbert.return_dict if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) distilbert_output = self.distilbert( flat_input_ids, flat_attention_mask, head_mask, flat_inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) hidden_state = distilbert_output[0] # (bs, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs, dim) pooled_output = self.pre_classifier(pooled_output) # (bs, dim) pooled_output = self.dropout(pooled_output, training=training) # (bs, dim) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + distilbert_output[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, )
[docs]@add_start_docstrings( """DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, DISTILBERT_START_DOCSTRING, ) class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) assert config.num_labels == 2, f"Incorrect number of labels {config.num_labels} instead of 2" self.dropout = tf.keras.layers.Dropout(config.qa_dropout)
[docs] @add_start_docstrings_to_callable(DISTILBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="distilbert-base-uncased", output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, inputs=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, start_positions=None, end_positions=None, training=False, ): r""" start_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.distilbert.return_dict if isinstance(inputs, (tuple, list)): start_positions = inputs[7] if len(inputs) > 7 else start_positions end_positions = inputs[8] if len(inputs) > 8 else end_positions if len(inputs) > 7: inputs = inputs[:7] elif isinstance(inputs, (dict, BatchEncoding)): start_positions = inputs.pop("start_positions", start_positions) end_positions = inputs.pop("end_positions", start_positions) distilbert_output = self.distilbert( inputs, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = distilbert_output[0] # (bs, max_query_len, dim) hidden_states = self.dropout(hidden_states, training=training) # (bs, max_query_len, dim) logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + distilbert_output[1:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, )