Source code for transformers.modeling_layoutlm

# coding=utf-8
# Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch LayoutLM model. """


import math

import torch
from torch import nn
from torch.nn import CrossEntropyLoss

from .activations import ACT2FN
from .configuration_layoutlm import LayoutLMConfig
from .file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_callable
from .modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, TokenClassifierOutput
from .modeling_utils import (
    PreTrainedModel,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)
from .utils import logging


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "LayoutLMConfig"
_TOKENIZER_FOR_DOC = "LayoutLMTokenizer"

LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "layoutlm-base-uncased",
    "layoutlm-large-uncased",
]


LayoutLMLayerNorm = torch.nn.LayerNorm


class LayoutLMEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config):
        super(LayoutLMEmbeddings, self).__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size)
        self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size)
        self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size)
        self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        self.LayerNorm = LayoutLMLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))

    def forward(
        self,
        input_ids=None,
        bbox=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
    ):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if position_ids is None:
            position_ids = self.position_ids[:, :seq_length]

        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        words_embeddings = inputs_embeds
        position_embeddings = self.position_embeddings(position_ids)
        left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0])
        upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1])
        right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2])
        lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3])
        h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1])
        w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0])
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = (
            words_embeddings
            + position_embeddings
            + left_position_embeddings
            + upper_position_embeddings
            + right_position_embeddings
            + lower_position_embeddings
            + h_position_embeddings
            + w_position_embeddings
            + token_type_embeddings
        )
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


# Copied from transformers.modeling_bert.BertSelfAttention with Bert->LayoutLM
class LayoutLMSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
    ):
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        if encoder_hidden_states is not None:
            mixed_key_layer = self.key(encoder_hidden_states)
            mixed_value_layer = self.value(encoder_hidden_states)
            attention_mask = encoder_attention_mask
        else:
            mixed_key_layer = self.key(hidden_states)
            mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in LayoutLMModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
        return outputs


# Copied from transformers.modeling_bert.BertSelfOutput with Bert->LayoutLM
class LayoutLMSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = LayoutLMLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


# Copied from transformers.modeling_bert.BertAttention with Bert->LayoutLM
class LayoutLMAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = LayoutLMSelfAttention(config)
        self.output = LayoutLMSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
    ):
        self_outputs = self.self(
            hidden_states,
            attention_mask,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            output_attentions,
        )
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


# Copied from transformers.modeling_bert.BertIntermediate
class LayoutLMIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


# Copied from transformers.modeling_bert.BertOutput with Bert->LayoutLM
class LayoutLMOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = LayoutLMLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


# Copied from transformers.modeling_bert.BertLayer with Bert->LayoutLM
class LayoutLMLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = LayoutLMAttention(config)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
            assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
            self.crossattention = LayoutLMAttention(config)
        self.intermediate = LayoutLMIntermediate(config)
        self.output = LayoutLMOutput(config)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
    ):
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
        )
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        if self.is_decoder and encoder_hidden_states is not None:
            assert hasattr(
                self, "crossattention"
            ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                output_attentions,
            )
            attention_output = cross_attention_outputs[0]
            outputs = outputs + cross_attention_outputs[1:]  # add cross attentions if we output attention weights

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )
        outputs = (layer_output,) + outputs
        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


# Copied from transformers.modeling_bert.BertEncoder with Bert->LayoutLM
class LayoutLMEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([LayoutLMLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=False,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None

            if getattr(self.config, "gradient_checkpointing", False):

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    output_attentions,
                )
            hidden_states = layer_outputs[0]
            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
        )


# Copied from transformers.modeling_bert.BertPooler
class LayoutLMPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


# Copied from transformers.modeling_bert.BertPredictionHeadTransform with Bert->LayoutLM
class LayoutLMPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        if isinstance(config.hidden_act, str):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
        self.LayerNorm = LayoutLMLayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


# Copied from transformers.modeling_bert.BertLMPredictionHead with Bert->LayoutLM
class LayoutLMLMPredictionHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.transform = LayoutLMPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states)
        return hidden_states


# Copied from transformers.modeling_bert.BertOnlyMLMHead with Bert->LayoutLM
class LayoutLMOnlyMLMHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = LayoutLMLMPredictionHead(config)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class LayoutLMPreTrainedModel(PreTrainedModel):
    """An abstract class to handle weights initialization and
    a simple interface for downloading and loading pretrained models.
    """

    config_class = LayoutLMConfig
    base_model_prefix = "layoutlm"
    authorized_missing_keys = [r"position_ids"]

    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayoutLMLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


LAYOUTLM_START_DOCSTRING = r"""    The LayoutLM model was proposed in
    `LayoutLM: Pre-training of Text and Layout for Document Image Understanding
    <https://arxiv.org/abs/1912.13318>`__ by....

    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
    usage and behavior.

    Parameters:
        config (:class:`~transformers.LayoutLMConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

LAYOUTLM_INPUTS_DOCSTRING = r"""
    Inputs:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`transformers.LayoutLMTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
            :func:`transformers.PreTrainedTokenizer.__call__` for details.

            `What are input IDs? <../glossary.html#input-ids>`__
        bbox (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
            Bounding Boxes of each input sequence tokens.
            Selected in the range ``[0, config.max_2d_position_embeddings - 1]``.

            `What are bboxes? <../glossary.html#position-ids>`_
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`):
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.

            `What are attention masks? <../glossary.html#attention-mask>`__
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token

            `What are token type IDs? <../glossary.html#token-type-ids>`_
        position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.

            `What are position IDs? <../glossary.html#position-ids>`_
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
        output_attentions (:obj:`bool`, `optional`):
            If set to ``True``, the attentions tensors of all attention layers are returned. See ``attentions`` under returned tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            If set to ``True``, the hidden states of all layers are returned. See ``hidden_states`` under returned tensors for more detail.
        return_dict (:obj:`bool`, `optional`):
            If set to ``True``, the model will return a :class:`~transformers.file_utils.ModelOutput` instead of a
            plain tuple.
"""


[docs]@add_start_docstrings( "The bare LayoutLM Model transformer outputting raw hidden-states without any specific head on top.", LAYOUTLM_START_DOCSTRING, ) class LayoutLMModel(LayoutLMPreTrainedModel): config_class = LayoutLMConfig pretrained_model_archive_map = LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST base_model_prefix = "layoutlm" def __init__(self, config): super(LayoutLMModel, self).__init__(config) self.config = config self.embeddings = LayoutLMEmbeddings(config) self.encoder = LayoutLMEncoder(config) self.pooler = LayoutLMPooler(config) self.init_weights()
[docs] def get_input_embeddings(self): return self.embeddings.word_embeddings
[docs] def set_input_embeddings(self, value): self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune): """Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads)
[docs] @add_start_docstrings_to_callable(LAYOUTLM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="layoutlm-base-uncased", output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, bbox=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): """ input_ids (torch.LongTensor of shape (batch_size, sequence_length)): Indices of input sequence tokens in the vocabulary. attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional): Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens. token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional): Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]. head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional): Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked. inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional): Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix. output_attentions (bool, optional): If set to True, the attentions tensors of all attention layers are returned. output_hidden_states (bool, optional): If set to True, the hidden states of all layers are returned. return_dict (bool, optional): If set to True, the model will return a ModelOutput instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if bbox is None: bbox = torch.zeros(tuple(list(input_shape) + [4]), dtype=torch.long, device=device) extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.to(dtype=next(self.parameters()).dtype) else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings( input_ids=input_ids, bbox=bbox, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
[docs]@add_start_docstrings("""LayoutLM Model with a `language modeling` head on top. """, LAYOUTLM_START_DOCSTRING) class LayoutLMForMaskedLM(LayoutLMPreTrainedModel): config_class = LayoutLMConfig pretrained_model_archive_map = LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST base_model_prefix = "layoutlm" def __init__(self, config): super().__init__(config) self.layoutlm = LayoutLMModel(config) self.cls = LayoutLMOnlyMLMHead(config) self.init_weights()
[docs] def get_input_embeddings(self): return self.layoutlm.embeddings.word_embeddings
[docs] def get_output_embeddings(self): return self.cls.predictions.decoder
[docs] @add_start_docstrings_to_callable(LAYOUTLM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="layoutlm-base-uncased", output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, bbox=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlm( input_ids, bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct( prediction_scores.view(-1, self.config.vocab_size), labels.view(-1), ) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
[docs]@add_start_docstrings( """LayoutLM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, LAYOUTLM_START_DOCSTRING, ) class LayoutLMForTokenClassification(LayoutLMPreTrainedModel): config_class = LayoutLMConfig pretrained_model_archive_map = LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST base_model_prefix = "layoutlm" def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.layoutlm = LayoutLMModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights()
[docs] def get_input_embeddings(self): return self.layoutlm.embeddings.word_embeddings
[docs] @add_start_docstrings_to_callable(LAYOUTLM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="layoutlm-base-uncased", output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, bbox=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlm( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels)[active_loss] active_labels = labels.view(-1)[active_loss] loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )