Source code for transformers.tokenization_roberta

# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for RoBERTa."""


import logging
from typing import List, Optional

from tokenizers.processors import RobertaProcessing

from .tokenization_gpt2 import GPT2Tokenizer, GPT2TokenizerFast
from .tokenization_utils import AddedToken


logger = logging.getLogger(__name__)

VOCAB_FILES_NAMES = {
    "vocab_file": "vocab.json",
    "merges_file": "merges.txt",
}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "roberta-base": "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-vocab.json",
        "roberta-large": "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-vocab.json",
        "roberta-large-mnli": "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-vocab.json",
        "distilroberta-base": "https://s3.amazonaws.com/models.huggingface.co/bert/distilroberta-base-vocab.json",
        "roberta-base-openai-detector": "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-vocab.json",
        "roberta-large-openai-detector": "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-vocab.json",
    },
    "merges_file": {
        "roberta-base": "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-merges.txt",
        "roberta-large": "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-merges.txt",
        "roberta-large-mnli": "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-merges.txt",
        "distilroberta-base": "https://s3.amazonaws.com/models.huggingface.co/bert/distilroberta-base-merges.txt",
        "roberta-base-openai-detector": "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-merges.txt",
        "roberta-large-openai-detector": "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-merges.txt",
    },
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "roberta-base": 512,
    "roberta-large": 512,
    "roberta-large-mnli": 512,
    "distilroberta-base": 512,
    "roberta-base-openai-detector": 512,
    "roberta-large-openai-detector": 512,
}


[docs]class RobertaTokenizer(GPT2Tokenizer): """ Constructs a RoBERTa BPE tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: :: >>> from transformers import RobertaTokenizer >>> tokenizer = RobertaTokenizer.from_pretrained("roberta-base") >>> tokenizer("Hello world")['input_ids'] [0, 31414, 232, 328, 2] >>> tokenizer(" Hello world")['input_ids'] [0, 20920, 232, 2] You can get around that behavior by passing ``add_prefix_space=True`` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. .. note:: When used with ``is_pretokenized=True``, this tokenizer will add a space before each word (even the first one). This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the methods. Users should refer to the superclass for more information regarding methods. Args: vocab_file (:obj:`str`): Path to the vocabulary file. merges_file (:obj:`str`): Path to the merges file. errors (:obj:`str`, `optional`, defaults to "replace"): Paradigm to follow when decoding bytes to UTF-8. See `bytes.decode <https://docs.python.org/3/library/stdtypes.html#bytes.decode>`__ for more information. bos_token (:obj:`string`, `optional`, defaults to "<s>"): The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token. .. note:: When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the :obj:`cls_token`. eos_token (:obj:`string`, `optional`, defaults to "</s>"): The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the :obj:`sep_token`. sep_token (:obj:`string`, `optional`, defaults to "</s>"): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (:obj:`string`, `optional`, defaults to "<s>"): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (:obj:`string`, `optional`, defaults to "<unk>"): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (:obj:`string`, `optional`, defaults to "<pad>"): The token used for padding, for example when batching sequences of different lengths. mask_token (:obj:`string`, `optional`, defaults to "<mask>"): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["attention_mask"] def __init__( self, vocab_file, merges_file, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, **kwargs ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file=vocab_file, merges_file=merges_file, errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, **kwargs, )
[docs] def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RoBERTa sequence has the following format: - single sequence: ``<s> X </s>`` - pair of sequences: ``<s> A </s></s> B </s>`` Args: token_ids_0 (:obj:`List[int]`): List of IDs to which the special tokens will be added token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: list of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep
[docs] def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``prepare_for_model`` method. Args: token_ids_0 (:obj:`List[int]`): List of ids. token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`): Optional second list of IDs for sequence pairs. already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Set to True if the token list is already formatted with special tokens for the model Returns: :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
[docs] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (:obj:`List[int]`): List of ids. token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def prepare_for_tokenization(self, text, is_pretokenized=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_pretokenized or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs)
[docs]class RobertaTokenizerFast(GPT2TokenizerFast): """ Constructs a "Fast" RoBERTa BPE tokenizer (backed by HuggingFace's `tokenizers` library), derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: :: >>> from transformers import RobertaTokenizerFast >>> tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base") >>> tokenizer("Hello world")['input_ids'] [0, 31414, 232, 328, 2] >>> tokenizer(" Hello world")['input_ids'] [0, 20920, 232, 2] You can get around that behavior by passing ``add_prefix_space=True`` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. .. note:: When used with ``is_pretokenized=True``, this tokenizer needs to be instantiated with ``add_prefix_space=True``. This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the methods. Users should refer to the superclass for more information regarding methods. Args: vocab_file (:obj:`str`): Path to the vocabulary file. merges_file (:obj:`str`): Path to the merges file. errors (:obj:`str`, `optional`, defaults to "replace"): Paradigm to follow when decoding bytes to UTF-8. See `bytes.decode <https://docs.python.org/3/library/stdtypes.html#bytes.decode>`__ for more information. unk_token (:obj:`string`, `optional`, defaults to `<|endoftext|>`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (:obj:`string`, `optional`, defaults to `<|endoftext|>`): The beginning of sequence token. eos_token (:obj:`string`, `optional`, defaults to `<|endoftext|>`): The end of sequence token. add_prefix_space (:obj:`bool`, `optional`, defaults to `False`): Whether to add a leading space to the first word. This allows to treat the leading word just as any other word. (GPT2 tokenizer detect beginning of words by the preceeding space) trim_offsets (:obj:`bool`, `optional`, defaults to `True`): Whether the post processing step should trim offsets to avoid including whitespaces. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["attention_mask"] def __init__( self, vocab_file, merges_file, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, trim_offsets=True, **kwargs ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token kwargs.setdefault("pad_token", pad_token) kwargs.setdefault("sep_token", sep_token) kwargs.setdefault("cls_token", cls_token) kwargs.setdefault("mask_token", mask_token) super().__init__( vocab_file=vocab_file, merges_file=merges_file, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets, **kwargs, ) # This will add the necessary special tokens to the vocabulary if needed self.sanitize_special_tokens() self.backend_tokenizer._tokenizer.post_processor = RobertaProcessing( sep=(sep_token, self.sep_token_id), cls=(cls_token, self.cls_token_id), add_prefix_space=add_prefix_space, trim_offsets=trim_offsets, )
[docs] def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] if token_ids_1 is None: return output return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (:obj:`List[int]`): List of ids. token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]