Source code for transformers.modeling_bart

# coding=utf-8
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BART model, ported from the fairseq repo."""
import logging
import math
import random
import warnings
from typing import Dict, List, Optional, Tuple

import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from torch.nn import CrossEntropyLoss

from .activations import ACT2FN
from .configuration_bart import BartConfig
from .file_utils import (
    add_code_sample_docstrings,
    add_end_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_callable,
)
from .modeling_utils import PreTrainedModel


logger = logging.getLogger(__name__)

_TOKENIZER_FOR_DOC = "BartTokenizer"


BART_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "facebook/bart-base",
    "facebook/bart-large",
    "facebook/bart-large-mnli",
    "facebook/bart-large-cnn",
    "facebook/bart-large-xsum",
    "facebook/mbart-large-en-ro",
    # See all BART models at https://huggingface.co/models?filter=bart
]


BART_START_DOCSTRING = r"""

    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matters related to general usage and behavior.

    Parameters:
        config (:class:`~transformers.BartConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.

"""
BART_GENERATION_EXAMPLE = r"""
    Summarization example::

        from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig

        # see ``examples/summarization/bart/run_eval.py`` for a longer example
        model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
        tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')

        ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
        inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt')

        # Generate Summary
        summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5, early_stopping=True)
        print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids])

"""

BART_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
               Indices of input sequence tokens in the vocabulary. Use BartTokenizer.encode to produce them.
            Padding will be ignored by default should you provide it.
            Indices can be obtained using :class:`transformers.BartTokenizer.encode(text)`.
        attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Mask to avoid performing attention on padding token indices in input_ids.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`, defaults to :obj:`None`):
            Tuple consists of (`last_hidden_state`, `optional`: `hidden_states`, `optional`: `attentions`)
            `last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`) is a sequence of hidden-states at the output of the last layer of the encoder.
            Used in the cross-attention of the decoder.
        decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`, defaults to :obj:`None`):
            Provide for translation and summarization training. By default, the model will create this tensor by shifting the input_ids right, following the paper.
        decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, tgt_seq_len)`, `optional`, defaults to :obj:`None`):
            Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.
            If you want to change padding behavior, you should read :func:`~transformers.modeling_bart._prepare_decoder_inputs` and modify.
            See diagram 1 in the paper for more info on the default strategy
        output_attentions (:obj:`bool`, `optional`, defaults to :obj:`None`):
            If set to ``True``, the attentions tensors of all attention layers are returned. See ``attentions`` under returned tensors for more detail.
"""


def invert_mask(attention_mask):
    """Turns 1->0, 0->1, False->True, True-> False"""
    assert attention_mask.dim() == 2
    return attention_mask.eq(0)


[docs]def _prepare_bart_decoder_inputs( config, input_ids, decoder_input_ids=None, decoder_padding_mask=None, causal_mask_dtype=torch.float32 ): """Prepare masks that ignore padding tokens in the decoder and a causal mask for the decoder if none are provided. This mimics the default behavior in fairseq. To override it pass in masks. Note: this is not called during generation """ pad_token_id = config.pad_token_id if decoder_input_ids is None: decoder_input_ids = shift_tokens_right(input_ids, pad_token_id) bsz, tgt_len = decoder_input_ids.size() if decoder_padding_mask is None: decoder_padding_mask = make_padding_mask(decoder_input_ids, pad_token_id) else: decoder_padding_mask = invert_mask(decoder_padding_mask) causal_mask = torch.triu(fill_with_neg_inf(torch.zeros(tgt_len, tgt_len)), 1).to( dtype=causal_mask_dtype, device=decoder_input_ids.device ) return decoder_input_ids, decoder_padding_mask, causal_mask
class PretrainedBartModel(PreTrainedModel): config_class = BartConfig base_model_prefix = "model" def _init_weights(self, module): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, SinusoidalPositionalEmbedding): pass elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @property def dummy_inputs(self): pad_token = self.config.pad_token_id input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) dummy_inputs = { "attention_mask": input_ids.ne(pad_token), "input_ids": input_ids, } return dummy_inputs def _make_linear_from_emb(emb): vocab_size, emb_size = emb.weight.shape lin_layer = nn.Linear(vocab_size, emb_size, bias=False) lin_layer.weight.data = emb.weight.data return lin_layer # Helper Functions, mostly for making masks def _check_shapes(shape_1, shape2): if shape_1 != shape2: raise AssertionError("shape mismatch: {} != {}".format(shape_1, shape2)) def shift_tokens_right(input_ids, pad_token_id): """Shift input ids one token to the right, and wrap the last non pad token (usually <eos>).""" prev_output_tokens = input_ids.clone() index_of_eos = (input_ids.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1) prev_output_tokens[:, 0] = input_ids.gather(1, index_of_eos).squeeze() prev_output_tokens[:, 1:] = input_ids[:, :-1] return prev_output_tokens def make_padding_mask(input_ids, padding_idx=1): """True for pad tokens""" padding_mask = input_ids.eq(padding_idx) if not padding_mask.any(): padding_mask = None return padding_mask # Helper Modules class EncoderLayer(nn.Module): def __init__(self, config: BartConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = SelfAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, ) self.normalize_before = config.normalize_before self.self_attn_layer_norm = LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim) def forward(self, x, encoder_padding_mask, output_attentions=False): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. for t_tgt, t_src is excluded (or masked out), =0 means it is included in attention Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) x, attn_weights = self.self_attn( query=x, key=x, key_padding_mask=encoder_padding_mask, output_attentions=output_attentions ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x if not self.normalize_before: x = self.self_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x if not self.normalize_before: x = self.final_layer_norm(x) return x, attn_weights class BartEncoder(nn.Module): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a :class:`EncoderLayer`. Args: config: BartConfig """ def __init__(self, config: BartConfig, embed_tokens): super().__init__() self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = embed_tokens.embedding_dim self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.padding_idx = embed_tokens.padding_idx self.max_source_positions = config.max_position_embeddings self.embed_tokens = embed_tokens if config.static_position_embeddings: self.embed_positions = SinusoidalPositionalEmbedding( config.max_position_embeddings, embed_dim, self.padding_idx ) else: self.embed_positions = LearnedPositionalEmbedding( config.max_position_embeddings, embed_dim, self.padding_idx, config.extra_pos_embeddings, ) self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.encoder_layers)]) self.layernorm_embedding = LayerNorm(embed_dim) if config.normalize_embedding else nn.Identity() # mbart has one extra layer_norm self.layer_norm = LayerNorm(config.d_model) if config.normalize_before else None def forward(self, input_ids, attention_mask=None, output_attentions=False, output_hidden_states=False): """ Args: input_ids (LongTensor): tokens in the source language of shape `(batch, src_len)` attention_mask (torch.LongTensor): indicating which indices are padding tokens. Returns: Tuple comprised of: - **x** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *output_hidden_states:* is True. - **all_attentions** (List[Tensor]): Attention weights for each layer. During training might not be of length n_layers because of layer dropout. """ # check attention mask and invert if attention_mask is not None: attention_mask = invert_mask(attention_mask) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_ids) x = inputs_embeds + embed_pos x = self.layernorm_embedding(x) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) encoder_states, all_attentions = [], [] for encoder_layer in self.layers: if output_hidden_states: encoder_states.append(x) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if self.training and (dropout_probability < self.layerdrop): # skip the layer attn = None else: x, attn = encoder_layer(x, attention_mask, output_attentions=output_attentions) if output_attentions: all_attentions.append(attn) if self.layer_norm: x = self.layer_norm(x) if output_hidden_states: encoder_states.append(x) # T x B x C -> B x T x C encoder_states = [hidden_state.transpose(0, 1) for hidden_state in encoder_states] x = x.transpose(0, 1) return x, encoder_states, all_attentions class DecoderLayer(nn.Module): def __init__(self, config: BartConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = SelfAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.normalize_before = config.normalize_before self.self_attn_layer_norm = LayerNorm(self.embed_dim) self.encoder_attn = SelfAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, encoder_decoder_attention=True, ) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim) def forward( self, x, encoder_hidden_states, encoder_attn_mask=None, layer_state=None, causal_mask=None, decoder_padding_mask=None, output_attentions=False, ): residual = x if layer_state is None: layer_state = {} if self.normalize_before: x = self.self_attn_layer_norm(x) # Self Attention x, self_attn_weights = self.self_attn( query=x, key=x, layer_state=layer_state, # adds keys to layer state key_padding_mask=decoder_padding_mask, attn_mask=causal_mask, output_attentions=output_attentions, ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x if not self.normalize_before: x = self.self_attn_layer_norm(x) # Cross attention residual = x assert self.encoder_attn.cache_key != self.self_attn.cache_key if self.normalize_before: x = self.encoder_attn_layer_norm(x) x, _ = self.encoder_attn( query=x, key=encoder_hidden_states, key_padding_mask=encoder_attn_mask, layer_state=layer_state, # mutates layer state ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x if not self.normalize_before: x = self.encoder_attn_layer_norm(x) # Fully Connected residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x if not self.normalize_before: x = self.final_layer_norm(x) return ( x, self_attn_weights, layer_state, ) # just self_attn weights for now, following t5, layer_state = cache for decoding class BartDecoder(nn.Module): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`DecoderLayer`. Args: config: BartConfig embed_tokens (torch.nn.Embedding): output embedding """ def __init__(self, config: BartConfig, embed_tokens: nn.Embedding): super().__init__() self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = embed_tokens.padding_idx self.max_target_positions = config.max_position_embeddings self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.embed_tokens = embed_tokens if config.static_position_embeddings: self.embed_positions = SinusoidalPositionalEmbedding( config.max_position_embeddings, config.d_model, config.pad_token_id ) else: self.embed_positions = LearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, self.padding_idx, config.extra_pos_embeddings, ) self.layers = nn.ModuleList( [DecoderLayer(config) for _ in range(config.decoder_layers)] ) # type: List[DecoderLayer] self.layernorm_embedding = LayerNorm(config.d_model) if config.normalize_embedding else nn.Identity() self.layer_norm = LayerNorm(config.d_model) if config.add_final_layer_norm else None def forward( self, input_ids, encoder_hidden_states, encoder_padding_mask, decoder_padding_mask, decoder_causal_mask, decoder_cached_states=None, use_cache=False, output_attentions=False, output_hidden_states=False, **unused, ): """ Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: input_ids (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_hidden_states: output from the encoder, used for encoder-side attention encoder_padding_mask: for ignoring pad tokens decoder_cached_states (dict or None): dictionary used for storing state during generation Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - hidden states - attentions """ # check attention mask and invert if encoder_padding_mask is not None: encoder_padding_mask = invert_mask(encoder_padding_mask) # embed positions positions = self.embed_positions(input_ids, use_cache=use_cache) if use_cache: input_ids = input_ids[:, -1:] positions = positions[:, -1:] # happens after we embed them # assert input_ids.ne(self.padding_idx).any() x = self.embed_tokens(input_ids) * self.embed_scale x += positions x = self.layernorm_embedding(x) x = F.dropout(x, p=self.dropout, training=self.training) # Convert to Bart output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim) x = x.transpose(0, 1) encoder_hidden_states = encoder_hidden_states.transpose(0, 1) # decoder layers all_hidden_states = () all_self_attns = () next_decoder_cache = [] for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (x,) dropout_probability = random.uniform(0, 1) if self.training and (dropout_probability < self.layerdrop): continue layer_state = decoder_cached_states[idx] if decoder_cached_states is not None else None x, layer_self_attn, layer_past = decoder_layer( x, encoder_hidden_states, encoder_attn_mask=encoder_padding_mask, decoder_padding_mask=decoder_padding_mask, layer_state=layer_state, causal_mask=decoder_causal_mask, output_attentions=output_attentions, ) if use_cache: next_decoder_cache.append(layer_past.copy()) if self.layer_norm and (idx == len(self.layers) - 1): # last layer of mbart x = self.layer_norm(x) if output_attentions: all_self_attns += (layer_self_attn,) # Convert to standard output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim) all_hidden_states = [hidden_state.transpose(0, 1) for hidden_state in all_hidden_states] x = x.transpose(0, 1) encoder_hidden_states = encoder_hidden_states.transpose(0, 1) if use_cache: next_cache = ((encoder_hidden_states, encoder_padding_mask), next_decoder_cache) else: next_cache = None return x, next_cache, all_hidden_states, list(all_self_attns) def _reorder_buffer(attn_cache, new_order): for k, input_buffer_k in attn_cache.items(): if input_buffer_k is not None: attn_cache[k] = input_buffer_k.index_select(0, new_order) return attn_cache class SelfAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim, num_heads, dropout=0.0, bias=True, encoder_decoder_attention=False, # otherwise self_attention ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.encoder_decoder_attention = encoder_decoder_attention self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.cache_key = "encoder_decoder" if self.encoder_decoder_attention else "self" def _shape(self, tensor, dim_0, bsz): return tensor.contiguous().view(dim_0, bsz * self.num_heads, self.head_dim).transpose(0, 1) def forward( self, query, key: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, layer_state: Optional[Dict[str, Optional[Tensor]]] = None, attn_mask: Optional[Tensor] = None, output_attentions=False, ) -> Tuple[Tensor, Optional[Tensor]]: """Input shape: Time(SeqLen) x Batch x Channel""" static_kv: bool = self.encoder_decoder_attention tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] # get here for encoder decoder cause of static_kv if layer_state is not None: # reuse k,v and encoder_padding_mask saved_state = layer_state.get(self.cache_key, {}) if "prev_key" in saved_state: # previous time steps are cached - no need to recompute key and value if they are static if static_kv: key = None else: saved_state = None layer_state = {} q = self.q_proj(query) * self.scaling if static_kv: if key is None: k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: k = self.k_proj(query) v = self.v_proj(query) q = self._shape(q, tgt_len, bsz) if k is not None: k = self._shape(k, -1, bsz) if v is not None: v = self._shape(v, -1, bsz) if saved_state is not None: k, v, key_padding_mask = self._use_saved_state(k, v, saved_state, key_padding_mask, static_kv, bsz) # Update cache layer_state[self.cache_key] = { "prev_key": k.view(bsz, self.num_heads, -1, self.head_dim), "prev_value": v.view(bsz, self.num_heads, -1, self.head_dim), "prev_key_padding_mask": key_padding_mask if not static_kv else None, } assert k is not None src_len = k.size(1) attn_weights = torch.bmm(q, k.transpose(1, 2)) assert attn_weights.size() == (bsz * self.num_heads, tgt_len, src_len) if attn_mask is not None: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) # This is part of a workaround to get around fork/join parallelism not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None assert key_padding_mask is None or key_padding_mask.size()[:2] == (bsz, src_len,) if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) reshaped = key_padding_mask.unsqueeze(1).unsqueeze(2) attn_weights = attn_weights.masked_fill(reshaped, float("-inf")) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = F.softmax(attn_weights, dim=-1) attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training,) assert v is not None attn_output = torch.bmm(attn_probs, v) assert attn_output.size() == (bsz * self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_output = self.out_proj(attn_output) if output_attentions: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) else: attn_weights = None return attn_output, attn_weights def _use_saved_state(self, k, v, saved_state, key_padding_mask, static_kv, bsz): # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: assert k is not None k = torch.cat([prev_key, k], dim=1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: assert v is not None v = torch.cat([prev_value, v], dim=1) assert k is not None and v is not None prev_key_padding_mask: Optional[Tensor] = saved_state.get("prev_key_padding_mask", None) key_padding_mask = self._cat_prev_key_padding_mask( key_padding_mask, prev_key_padding_mask, bsz, k.size(1), static_kv ) return k, v, key_padding_mask @staticmethod def _cat_prev_key_padding_mask( key_padding_mask: Optional[Tensor], prev_key_padding_mask: Optional[Tensor], batch_size: int, src_len: int, static_kv: bool, ) -> Optional[Tensor]: # saved key padding masks have shape (bsz, seq_len) if prev_key_padding_mask is not None: if static_kv: new_key_padding_mask = prev_key_padding_mask else: new_key_padding_mask = torch.cat([prev_key_padding_mask, key_padding_mask], dim=1) elif key_padding_mask is not None: filler = torch.zeros( batch_size, src_len - key_padding_mask.size(1), dtype=key_padding_mask.dtype, device=key_padding_mask.device, ) new_key_padding_mask = torch.cat([filler, key_padding_mask], dim=1) else: new_key_padding_mask = prev_key_padding_mask return new_key_padding_mask class BartClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" # This can trivially be shared with RobertaClassificationHead def __init__( self, input_dim, inner_dim, num_classes, pooler_dropout, ): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) def forward(self, x): x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x class LearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to the forward function. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, offset): # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models dont have this hack self.offset = offset assert padding_idx is not None num_embeddings += offset super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx) def forward(self, input_ids, use_cache=False): """Input is expected to be of size [bsz x seqlen].""" bsz, seq_len = input_ids.shape[:2] if use_cache: positions = input_ids.data.new(1, 1).fill_(seq_len - 1) # called before slicing else: # starts at 0, ends at 1-seq_len positions = torch.arange(seq_len, dtype=torch.long, device=self.weight.device) return super().forward(positions + self.offset) def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True): if torch.cuda.is_available(): try: from apex.normalization import FusedLayerNorm return FusedLayerNorm(normalized_shape, eps, elementwise_affine) except ImportError: pass return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine) def fill_with_neg_inf(t): """FP16-compatible function that fills a input_ids with -inf.""" return t.float().fill_(float("-inf")).type_as(t) def _filter_out_falsey_values(tup) -> Tuple: """Remove entries that are None or [] from an iterable.""" return tuple(x for x in tup if isinstance(x, torch.Tensor) or x) # Public API def _get_shape(t): return getattr(t, "shape", None)
[docs]@add_start_docstrings( "The bare BART Model outputting raw hidden-states without any specific head on top.", BART_START_DOCSTRING, ) class BartModel(PretrainedBartModel): def __init__(self, config: BartConfig): super().__init__(config) padding_idx, vocab_size = config.pad_token_id, config.vocab_size self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) self.encoder = BartEncoder(config, self.shared) self.decoder = BartDecoder(config, self.shared) self.init_weights()
[docs] @add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING) @add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="facebook/bart-large") def forward( self, input_ids, attention_mask=None, decoder_input_ids=None, encoder_outputs: Optional[Tuple] = None, decoder_attention_mask=None, decoder_cached_states=None, use_cache=None, output_attentions=None, output_hidden_states=None, ): if decoder_input_ids is None: use_cache = False output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache # make masks if user doesn't supply if not use_cache: decoder_input_ids, decoder_padding_mask, causal_mask = _prepare_bart_decoder_inputs( self.config, input_ids, decoder_input_ids=decoder_input_ids, decoder_padding_mask=decoder_attention_mask, causal_mask_dtype=self.shared.weight.dtype, ) else: decoder_padding_mask, causal_mask = None, None assert decoder_input_ids is not None if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) assert isinstance(encoder_outputs, tuple) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) decoder_outputs = self.decoder( decoder_input_ids, encoder_outputs[0], attention_mask, decoder_padding_mask, decoder_causal_mask=causal_mask, decoder_cached_states=decoder_cached_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, ) # Attention and hidden_states will be [] or None if they aren't needed decoder_outputs: Tuple = _filter_out_falsey_values(decoder_outputs) assert isinstance(decoder_outputs[0], torch.Tensor) encoder_outputs: Tuple = _filter_out_falsey_values(encoder_outputs) return decoder_outputs + encoder_outputs
def get_input_embeddings(self): return self.shared def set_input_embeddings(self, value): self.shared = value self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared def get_output_embeddings(self): return _make_linear_from_emb(self.shared) # make it on the fly
[docs]@add_start_docstrings( "The BART Model with a language modeling head. Can be used for summarization.", BART_START_DOCSTRING ) class BartForConditionalGeneration(PretrainedBartModel): base_model_prefix = "model" def __init__(self, config: BartConfig): super().__init__(config) base_model = BartModel(config) self.model = base_model self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding: old_num_tokens = self.model.shared.num_embeddings new_embeddings = super().resize_token_embeddings(new_num_tokens) self.model.shared = new_embeddings self._resize_final_logits_bias(new_num_tokens, old_num_tokens) return new_embeddings def _resize_final_logits_bias(self, new_num_tokens: int, old_num_tokens: int) -> None: if new_num_tokens <= old_num_tokens: new_bias = self.final_logits_bias[:, :new_num_tokens] else: extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) self.register_buffer("final_logits_bias", new_bias)
[docs] @add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING) @add_end_docstrings(BART_GENERATION_EXAMPLE) def forward( self, input_ids, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_cached_states=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, **unused, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Labels for computing the masked language modeling loss. Indices should either be in ``[0, ..., config.vocab_size]`` or -100 (see ``input_ids`` docstring). Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``. Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs: masked_lm_loss (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Masked language modeling loss. prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`) Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Conditional generation example:: # Mask filling only works for bart-large from transformers import BartTokenizer, BartForConditionalGeneration tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') TXT = "My friends are <mask> but they eat too many carbs." model = BartForConditionalGeneration.from_pretrained('facebook/bart-large') input_ids = tokenizer([TXT], return_tensors='pt')['input_ids'] logits = model(input_ids)[0] masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() probs = logits[0, masked_index].softmax(dim=0) values, predictions = probs.topk(5) tokenizer.decode(predictions).split() # ['good', 'great', 'all', 'really', 'very'] """ if "lm_labels" in unused: warnings.warn( "The `lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.", DeprecationWarning, ) labels = unused.pop("lm_labels") if labels is not None: use_cache = False outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, decoder_cached_states=decoder_cached_states, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) lm_logits = F.linear(outputs[0], self.model.shared.weight, bias=self.final_logits_bias) outputs = (lm_logits,) + outputs[1:] # Add cache, hidden states and attention if they are here if labels is not None: loss_fct = nn.CrossEntropyLoss() # TODO(SS): do we need to ignore pad tokens in labels? masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) outputs = (masked_lm_loss,) + outputs return outputs
def prepare_inputs_for_generation(self, decoder_input_ids, past, attention_mask, use_cache, **kwargs): assert past is not None, "past has to be defined for encoder_outputs" encoder_outputs, decoder_cached_states = past return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "decoder_cached_states": decoder_cached_states, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } def adjust_logits_during_generation(self, logits, cur_len, max_length): if cur_len == 1: self._force_token_ids_generation(logits, self.config.bos_token_id) if cur_len == max_length - 1 and self.config.eos_token_id is not None: self._force_token_ids_generation(logits, self.config.eos_token_id) return logits def _force_token_ids_generation(self, scores, token_ids) -> None: """force one of token_ids to be generated by setting prob of all other tokens to 0""" if isinstance(token_ids, int): token_ids = [token_ids] all_but_token_ids_mask = torch.tensor( [x for x in range(self.config.vocab_size) if x not in token_ids], dtype=torch.long, device=next(self.parameters()).device, ) assert len(scores.shape) == 2, "scores should be of rank 2 with shape: [batch_size, vocab_size]" scores[:, all_but_token_ids_mask] = -float("inf") @staticmethod def _reorder_cache(past, beam_idx): ((enc_out, enc_mask), decoder_cached_states) = past reordered_past = [] for layer_past in decoder_cached_states: # get the correct batch idx from decoder layer's batch dim for cross and self-attn layer_past_new = { attn_key: _reorder_buffer(attn_cache, beam_idx) for attn_key, attn_cache in layer_past.items() } reordered_past.append(layer_past_new) new_enc_out = enc_out if enc_out is None else enc_out.index_select(0, beam_idx) new_enc_mask = enc_mask if enc_mask is None else enc_mask.index_select(0, beam_idx) past = ((new_enc_out, new_enc_mask), reordered_past) return past def get_encoder(self): return self.model.encoder def get_output_embeddings(self): return _make_linear_from_emb(self.model.shared) # make it on the fly
[docs]@add_start_docstrings( """Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BART_START_DOCSTRING, ) class BartForSequenceClassification(PretrainedBartModel): def __init__(self, config: BartConfig, **kwargs): super().__init__(config, **kwargs) self.model = BartModel(config) self.classification_head = BartClassificationHead( config.d_model, config.d_model, config.num_labels, config.classif_dropout, ) self.model._init_weights(self.classification_head.dense) self.model._init_weights(self.classification_head.out_proj)
[docs] @add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING) @add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="facebook/bart-large") def forward( self, input_ids, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, use_cache=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BartConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided): Classification loss (cross entropy) logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ if labels is not None: use_cache = False outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_outputs, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, ) x = outputs[0] # last hidden state eos_mask = input_ids.eq(self.config.eos_token_id) if len(torch.unique(eos_mask.sum(1))) > 1: raise ValueError("All examples must have the same number of <eos> tokens.") sentence_representation = x[eos_mask, :].view(x.size(0), -1, x.size(-1))[:, -1, :] logits = self.classification_head(sentence_representation) # Prepend logits outputs = (logits,) + outputs[1:] # Add hidden states and attention if they are here if labels is not None: # prepend loss to output, loss = F.cross_entropy(logits.view(-1, self.config.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs
[docs]@add_start_docstrings( """BART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BART_START_DOCSTRING, ) class BartForQuestionAnswering(PretrainedBartModel): def __init__(self, config): super().__init__(config) config.num_labels = 2 self.num_labels = config.num_labels self.model = BartModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.model._init_weights(self.qa_outputs)
[docs] @add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING) @add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="facebook/bart-large") def forward( self, input_ids, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, use_cache=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BartConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`): Span-start scores (before SoftMax). end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`): Span-end scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ if start_positions is not None and end_positions is not None: use_cache = False outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_outputs, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) outputs = (start_logits, end_logits,) + outputs[1:] if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 outputs = (total_loss,) + outputs return outputs # return outputs # (loss), start_logits, end_logits, encoder_outputs, (hidden_states), (attentions)
class SinusoidalPositionalEmbedding(nn.Embedding): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions, embedding_dim, padding_idx=None): super().__init__(num_positions, embedding_dim) if embedding_dim % 2 != 0: raise NotImplementedError(f"odd embedding_dim {embedding_dim} not supported") self.weight = self._init_weight(self.weight) @staticmethod def _init_weight(out: nn.Parameter): """Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in the 2nd half of the vector. [dim // 2:] """ n_pos, dim = out.shape position_enc = np.array( [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)] ) out[:, 0 : dim // 2] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) # This line breaks for odd n_pos out[:, dim // 2 :] = torch.FloatTensor(np.cos(position_enc[:, 1::2])) out.detach_() out.requires_grad = False return out @torch.no_grad() def forward(self, input_ids, use_cache=False): """Input is expected to be of size [bsz x seqlen].""" bsz, seq_len = input_ids.shape[:2] if use_cache: positions = input_ids.data.new(1, 1).fill_(seq_len - 1) # called before slicing else: # starts at 0, ends at 1-seq_len positions = torch.arange(seq_len, dtype=torch.long, device=self.weight.device) return super().forward(positions)