Source code for transformers.configuration_distilbert

# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
""" DistilBERT model configuration """

import logging

from .configuration_utils import PretrainedConfig

logger = logging.getLogger(__name__)

    "distilbert-base-uncased": "",
    "distilbert-base-uncased-distilled-squad": "",
    "distilbert-base-cased": "",
    "distilbert-base-cased-distilled-squad": "",
    "distilbert-base-german-cased": "",
    "distilbert-base-multilingual-cased": "",
    "distilbert-base-uncased-finetuned-sst-2-english": "",

[docs]class DistilBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a :class:`~transformers.DistilBertModel`. It is used to instantiate a DistilBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the DistilBERT `distilbert-base-uncased <>`__ architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: vocab_size (:obj:`int`, optional, defaults to 30522): Vocabulary size of the DistilBERT model. Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.BertModel`. max_position_embeddings (:obj:`int`, optional, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). sinusoidal_pos_embds (:obj:`boolean`, optional, defaults to :obj:`False`): Whether to use sinusoidal positional embeddings. n_layers (:obj:`int`, optional, defaults to 6): Number of hidden layers in the Transformer encoder. n_heads (:obj:`int`, optional, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. dim (:obj:`int`, optional, defaults to 768): Dimensionality of the encoder layers and the pooler layer. hidden_dim (:obj:`int`, optional, defaults to 3072): The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. dropout (:obj:`float`, optional, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (:obj:`float`, optional, defaults to 0.1): The dropout ratio for the attention probabilities. activation (:obj:`str` or :obj:`function`, optional, defaults to "gelu"): The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported. initializer_range (:obj:`float`, optional, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. qa_dropout (:obj:`float`, optional, defaults to 0.1): The dropout probabilities used in the question answering model :class:`~transformers.DistilBertForQuestionAnswering`. seq_classif_dropout (:obj:`float`, optional, defaults to 0.2): The dropout probabilities used in the sequence classification and the multiple choice model :class:`~transformers.DistilBertForSequenceClassification`. Example:: >>> from transformers import DistilBertModel, DistilBertConfig >>> # Initializing a DistilBERT configuration >>> configuration = DistilBertConfig() >>> # Initializing a model from the configuration >>> model = DistilBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config """ model_type = "distilbert" def __init__( self, vocab_size=30522, max_position_embeddings=512, sinusoidal_pos_embds=False, n_layers=6, n_heads=12, dim=768, hidden_dim=4 * 768, dropout=0.1, attention_dropout=0.1, activation="gelu", initializer_range=0.02, qa_dropout=0.1, seq_classif_dropout=0.2, pad_token_id=0, **kwargs ): super().__init__(**kwargs, pad_token_id=pad_token_id) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.sinusoidal_pos_embds = sinusoidal_pos_embds self.n_layers = n_layers self.n_heads = n_heads self.dim = dim self.hidden_dim = hidden_dim self.dropout = dropout self.attention_dropout = attention_dropout self.activation = activation self.initializer_range = initializer_range self.qa_dropout = qa_dropout self.seq_classif_dropout = seq_classif_dropout @property def hidden_size(self): return self.dim @property def num_attention_heads(self): return self.n_heads @property def num_hidden_layers(self): return self.n_layers